Abstract This work investigates mesoscale structures in the northern high‐latitude thermosphere using an ascending‐descending accelerometry (ADA) technique to determine whether observed in‐track acceleration perturbations are influenced by in‐track winds. The ADA technique is applied to accelerometer measurements from the Challenging Minisatellite Payload mission between 2003 and 2006 during quiet geomagnetic activity, revealing a climatological view of regularly occurring acceleration perturbation structures. The ADA technique reveals a structured acceleration enhancement on the dayside with a strong signature of density dominance confined to a spatial envelope ranging from 8:00 to 17:00 magnetic local time (MLT) and between 72° and 82° magnetic latitude, aligning with past observations of the cusp density enhancement. Additionally, this sector displays a wind perturbation structure with a reversal in direction that coincides with the center of the enhancement. The premidnight quadrant shows strong evidence of wind influence in the acceleration perturbations from 18:00 to 24:00 MLT between 70° and 90° magnetic latitude associated with southward wind perturbations. This suggests that past analyses of this region could have misidentified this structure as a density enhancement by neglecting in‐track wind influences in accelerometry‐derived mass density data sets. The early morning quadrant consists of negative acceleration perturbations attributed to density depletions, with signatures of southward wind perturbations. These mass density perturbations, in conjunction with in‐track wind perturbations, suggest that the coupled ionosphere‐thermosphere mechanisms responsible for the high‐latitude density structure also influence the wind structure. This work is supplemented with TIEGCM simulations to verify the accuracy of ADA and highlight discrepancies between the simulations and observations.
more »
« less
Distinguishing Density and Wind Perturbations in the Equatorial Thermosphere Anomaly
Abstract In this paper, the equatorial thermosphere anomaly (ETA) is investigated using accelerometer measurements to determine whether the feature is density‐dominated, wind‐dominated, or some combination of the two. An ascending‐descending accelerometry (ADA) technique is introduced to address the density‐wind ambiguity that appears when interpreting the ETA in atmospheric drag acceleration analyses. This technique separates ascending and descending acceleration measurements to determine if a wind's directionality influences the interpretation of the observed ETA feature. The ADA technique is applied to accelerometer measurements taken from the Challenging Minisatellite Payload mission and has revealed that the ETA is primarily density‐dominated from 9:00 to 16:00 local time (LT) near 400 km altitude, with the acceleration perturbations behaving similarly between 2003 and 2004 across all seasons. This finding suggests that the perturbations in the acceleration due to in‐track wind perturbations are small compared to the perturbations due to mass density, while indicating that the formation mechanisms across these local times are similar and persistent. The results also revealed that in the terminator region at 18:00 LT the acceleration perturbations deviate appreciably between ascending and descending passes, indicating different or multiple processes occurring at this local time compared to the 9:00–16:00 LT ascribed to the ETA. These results help constrain ETA formation theories to specific local times and thermospheric property responses without the use of supplemental wind measurements, while also indicating regions where in‐track winds cannot always be neglected.
more »
« less
- Award ID(s):
- 1936665
- PAR ID:
- 10511224
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Space Physics
- Volume:
- 129
- Issue:
- 6
- ISSN:
- 2169-9380
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT Previous studies of fueling black holes in galactic nuclei have argued (on scales $${\sim}0.01{-}1000\,$$pc) accretion is dynamical with inflow rates $$\dot{M}\sim \eta \, M_{\rm gas}/t_{\rm dyn}$$ in terms of gas mass Mgas, dynamical time tdyn, and some η. But these models generally neglected expulsion of gas by stellar feedback, or considered extremely high densities where expulsion is inefficient. Studies of star formation, however, have shown on sub-kpc scales the expulsion efficiency fwind = Mejected/Mtotal scales with the gravitational acceleration as $$(1-f_{\rm wind})/f_{\rm wind}\sim \bar{a}_{\rm grav}/\langle \dot{p}/m_{\ast }\rangle \sim \Sigma _{\rm eff}/\Sigma _{\rm crit}$$ where $$\bar{a}_{\rm grav}\equiv G\, M_{\rm tot}(\lt r)/r^{2}$$ and $$\langle \dot{p}/m_{\ast }\rangle$$ is the momentum injection rate from young stars. Adopting this as the simplest correction for stellar feedback, $$\eta \rightarrow \eta \, (1-f_{\rm wind})$$, we show this provides a more accurate description of simulations with stellar feedback at low densities. This has immediate consequences, predicting the slope and normalization of the MBH − σ and MBH − Mbulge relation, LAGN −SFR relations, and explanations for outliers in compact Es. Most strikingly, because star formation simulations show expulsion is efficient (fwind ∼ 1) below total-mass surface density $$M_{\rm tot}/\pi \, r^{2}\lt \Sigma _{\rm crit}\sim 3\times 10^{9}\, \mathrm{M}_{\odot }\, {\rm kpc^{-2}}$$ (where $$\Sigma _{\rm crit}=\langle \dot{p}/m_{\ast }\rangle /(\pi \, G)$$), BH mass is predicted to specifically trace host galaxy properties above a critical surface brightness Σcrit (B-band $$\mu _{\rm B}^{\rm crit}\sim 19\, {\rm mag\, arcsec^{-2}}$$). This naturally explains why BH masses preferentially reflect bulge properties or central surface densities (e.g. $$\Sigma _{1\, {\rm kpc}}$$), not ‘total’ galaxy properties.more » « less
-
We present a model-based approach to estimate the vertical profile of horizontal wind velocity components using motion perturbations of a multirotor unmanned aircraft system (UAS) in both hovering and steady ascending flight. The state estimation framework employed for wind estimation was adapted to a set of closed-loop rigid body models identified for an off-the-shelf quadrotor. The quadrotor models used for wind estimation were characterized for hovering and steady ascending flight conditions ranging between 0 and 2 m/s. The closed-loop models were obtained using system identification algorithms to determine model structures and estimate model parameters. The wind measurement method was validated experimentally above the Virginia Tech Kentland Experimental Aircraft Systems Laboratory by comparing quadrotor and independent sensor measurements from a sonic anemometer and two SoDAR instruments. Comparison results demonstrated quadrotor wind estimation in close agreement with the independent wind velocity measurements. However, horizontal wind velocity profiles were difficult to validate using time-synchronized SoDAR measurements. Analysis of the noise intensity and signal-to-noise ratio of the SoDARs proved that close-proximity quadrotor operations can corrupt wind measurement from SoDARs, which has not previously been reported.more » « less
-
Cymbalyuk, Gennady S (Ed.)Stick insects respond to visual or tactile stimuli with whole-body turning or directed reach-to-grasp movements. Such sensory-induced turning and reaching behaviour requires interneurons to convey information from sensory neuropils of the head ganglia to motor neuropils of the thoracic ganglia. To date, descending interneurons are largely unknown in stick insects. In particular, it is unclear whether the special role of the front legs in sensory-induced turning and reaching has a neuroanatomical correlate in terms of descending interneuron numbers. Here, we describe the population of descending interneurons with somata in the brain or gnathal ganglion in the stick insectCarausius morosus, providing a first map of soma cluster counts and locations. By comparison of interneuron populations with projections to the pro- and mesothoracic ganglia, we then estimate the fraction of descending interneurons that terminate in the prothoracic ganglion. With regard to short-latency, touch-mediated reach-to-grasp movements, we also locate likely sites of synaptic interactions between antennal proprioceptive afferents to the deutocerebrum and gnathal ganglion with descending or ascending interneuron fibres. To this end, we combine fluorescent dye stainings of thoracic connectives with stainings of antennal hair field sensilla. Backfills of neck connectives revealed up to 410 descending interneuron somata (brain: 205 in 19 clusters; gnathal ganglion: 205). In comparison, backfills of the prothorax-mesothorax connectives stained only up to 173 somata (brain: 83 in 16 clusters; gnathal ganglion: 90), suggesting that up to 60% of all descending interneurons may terminate in the prothoracic ganglion (estimated upper bound). Double stainings of connectives and antennal hair field sensilla revealed that ascending or descending fibres arborise in close proximity of afferent terminals in the deutocerebrum and in the middle part of the gnathal ganglia. We conclude that two cephalothoracic pathways may convey cues about antennal movement and pointing direction to thoracic motor centres via two synapses only.more » « less
-
Abstract The dynamics of an asymmetric rainband complex leading into secondary eyewall formation (SEF) are examined in a simulation of Hurricane Matthew (2016), with particular focus on the tangential wind field evolution. Prior to SEF, the storm experiences an axisymmetric broadening of the tangential wind field as a stationary rainband complex in the downshear quadrants intensifies. The axisymmetric acceleration pattern that causes this broadening is an inward-descending structure of positive acceleration nearly 100 km wide in radial extent and maximizes in the low levels near 50 km radius. Vertical advection from convective updrafts in the downshear-right quadrant largely contributes to the low-level acceleration maximum, while the broader inward-descending pattern is due to horizontal advection within stratiform precipitation in the downshear-left quadrant. This broad slantwise pattern of positive acceleration is due to a mesoscale descending inflow (MDI) that is driven by midlevel cooling within the stratiform regions and draws absolute angular momentum inward. The MDI is further revealed by examining the irrotational component of the radial velocity, which shows the MDI extending downwind into the upshear-left quadrant. Here, the MDI connects with the boundary layer, where new convective updrafts are triggered along its inner edge; these new upshear-left updrafts are found to be important to the subsequent axisymmetrization of the low-level tangential wind maximum within the incipient secondary eyewall.more » « less
An official website of the United States government
