skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Novel insights into paternity skew in a polyandrous social wasp
Females of many species are polyandrous. However, polyandry can give rise to conflict among individuals within families. We examined the level of polyandry and paternity skew in the common eastern yellowjacket wasp,Vespula maculifrons, in order to gain a greater understanding of conflict in social insects. We collected 10 colonies ofV. maculifronsand genotyped workers and prereproductive queens at highly variable microsatellite markers to assign each to a patriline. Genotypic data revealed evidence of significant paternity skew among patrilines. In addition, we found that patrilines contributed differentially to caste production (worker vs. queen), suggesting an important role for reproductive conflict not previously discovered. We also investigated if patterns of paternity skew and mate number varied over time. However, we found no evidence of changes in levels of polyandry when compared to historical data dating back almost 40 years. Finally, we measured a suite of morphological traits in individuals from the most common and least common patrilines in each colony to test if males that showed highly skewed reproductive success also produced offspring that differed in phenotype. Our data revealed weak correlation between paternity skew and morphological phenotype of offspring sired by different males, suggesting no evidence of evolutionary tradeoffs at the level investigated. Overall, this study is the first to report significant paternity and caste‐associated skew inV. maculifrons, and to investigate the phenotypic consequences of skew in a social wasp. Our results suggest that polyandry can have important consequences on the genetic and social structure of insect societies.  more » « less
Award ID(s):
2105033 2019799
PAR ID:
10511285
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Insect Science
ISSN:
1672-9609
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Booth, Warren (Ed.)
    Abstract Highly social species are successful because they cooperate in obligately integrated societies. We examined temporal genetic variation in the eusocial wasp Vespula maculifrons to gain a greater understanding of evolution in highly social taxa. First, we wished to test if effective population sizes of eusocial species were relatively low due to the reproductive division of labor that characterizes eusocial taxa. We thus estimated the effective population size of V. maculifrons by examining temporal changes in population allele frequencies. We sampled the genetic composition of a V. maculifrons population at 3 separate timepoints spanning a 13-year period. We found that effective population size ranged in the hundreds of individuals, which is similar to estimates in other, non-eusocial taxa. Second, we estimated levels of polyandry in V. maculifrons in different years to determine if queen mating system varied over time. We found no significant change in the number or skew of males mated to queens. In addition, mating skew was not significant within V. maculifrons colonies. Therefore, our data suggest that queen mate number may be subject to stabilizing selection in this taxon. Overall, our study provides novel insight into the selective processes operating in eusocial species by analyzing temporal genetic changes within populations. 
    more » « less
  2. Male orangutans exhibit bimaturism—two mature morphs—flanged and unflanged males. Flanged males are larger, have cheek pads (flanges) and large throat sacs, and produce long calls. Previous orangutan paternity studies found variation between the reproductive success of each morph and in the degrees of reproductive skew. However, these studies were limited by a lack of behavioral maternity data, the inclusion of ex-captive orangutans, and/or the presence of feeding stations. Here we present the first paternity data from completely wild orangutans with known mothers. We hypothesized that (1) flanged males would have higher reproductive success than unflanged males due to flanged male dominance and female preference and (2) a single male would not monopolize paternity due to the temporal and spatial distribution of fecund females. We used fecal samples collected in Gunung Palung National Park from 2008-2019 to genotype orangutans (13 offspring born 2002-2015, their 10 mothers, and 19 candidate sires) using 12 microsatellites. MICROCHECKER 2.2.3 and CERVUS 3.0 were used to confirm the suitability of the microsatellite panel, fidelity of individual identities, and genetic maternity. Paternity analysis was performed with both CERVUS 3.0 and COLONY 2.0.6.7. We were able to identify paternity for six offspring. Four flanged males sired five offspring, and one sire’s morph was unknown at the time of conception. We found that flanged males have higher reproductive success and that females are not monopolizable in this completely wild setting. We discuss the implications of all published orangutan paternity results for understanding bimaturism in orangutans. 
    more » « less
  3. AbstractInsect societies vary greatly in their social structure, mating biology, and life history. Polygyny, the presence of multiple reproductive queens in a single colony, and polyandry, multiple mating by females, both increase the genetic variability in colonies of eusocial organisms, resulting in potential reproductive conflicts. The co-occurrence of polygyny and polyandry in a single species is rarely observed across eusocial insects, and these traits have been found to be negatively correlated in ants.Acromyrmexleaf-cutting ants are well-suited for investigating the evolution of complex mating strategies because both polygyny and polyandry co-occur in this genus. We used microsatellite markers and parentage inference in five South AmericanAcromyrmexspecies to study how different selective pressures influence the evolution of polygyny and polyandry. We show thatAcromyrmexspecies exhibit independent variation in mating biology and social structure, and polygyny and polyandry are not necessarily negatively correlated within genera. One species,Acromyrmex lobicornis, displays a significantly lower mating frequency compared to others, while another species,A. lundii, appears to have reverted to obligate monogyny. These variations appear to have a small impact on average intra-colonial relatedness, although the biological significance of such a small effect size is unclear. All species show significant reproductive skew between patrilines, but there was no significant difference in reproductive skew between any of the sampled species. We find that the evolution of social structure and mating biology appear to follow independent evolutionary trajectories in different species. Finally, we discuss the evolutionary implications that mating biology and social structure have on life history evolution inAcromyrmexleaf-cutting ants. Significance statementMany species of eusocial insects have colonies with multiple queens (polygyny), or queens mating with multiple males (polyandry). Both behaviors generate potentially beneficial genetic diversity in ant colonies as well as reproductive conflict. The co-occurrence of both polygyny and polyandry in a single species is only known from few ant species. Leaf-cutting ants have both multi-queen colonies and multiply mated queens, providing a well-suited system for studying the co-evolutionary dynamics between mating behavior and genetic diversity in colonies of eusocial insects. We used microsatellite markers to infer the socio-reproductive behavior in five South American leaf-cutter ant species. We found that variation in genetic diversity in colonies was directly associated with the mating frequencies of queens, but not with the number of queens in a colony. We suggest that multi-queen nesting and mating frequency evolve independently of one another, indicating that behavioral and ecological factors other than genetic diversity contribute to the evolution of complex mating behaviors in leaf-cutting ants. 
    more » « less
  4. The frequency of polyandry has important implications for effective population size, genetic variation, and reproductive output. Compared to terrestrial organisms with complex social behaviors, the patterns and consequences of polyandry in marine populations are relatively less clear. Here we quantified polyandry in the Florida crown conchMelongena coronain the field under natural settings. We assessed the extent to which additional mates increase genetic diversity within broods, how polyandry relates to female reproductive output, and how consistent patterns are across their 5 mo reproductive season in 2 separate years. We found large variation in polyandry (2 to 19 sires per brood) and reproductive output among females. However, the number of sires per brood was unrelated to reproductive output. The number of sires increased genetic diversity within broods regardless of year or time of season. The number of sires per brood and reproductive output did not vary over the season or among years. Overall, our results show natural variation in polyandry upon which selection could act, but increased polyandry did not lead to females producing more hatchlings, and neither polyandry nor reproductive output increased over time when females could accumulate and store sperm. Any benefits of polyandry in terms of genetic diversity are expected to occur after hatching, if at all, rather than inside the egg capsule. Variation in polyandry could arise because males control mating and polyandry is less costly for females than trying to prevent superfluous matings. 
    more » « less
  5. Abstract Many social species show variation in their social structure in response to different environmental conditions. For example, colonies of the yellowjacket waspVespula squamosaare typically headed by a single reproductive queen and survive for only a single season. However, in warmer climates,V. squamosacolonies sometimes persist for multiple years and can grow to extremely large size. We used genetic markers to understand patterns of reproduction and recruitment within these perennial colonies. We genotypedV. squamosaworkers, pre‐reproductive queens, and males from perennial colonies in the southeastern United States at 10 polymorphic microsatellite loci and one mitochondrial DNA locus. We found thatV. squamosafrom perennial nests were produced by multiple reproductives, in contrast to typical annual colonies. Relatedness of nestmates from perennial colonies was significantly lower than relatedness of nestmates from annual colonies. Our analyses of mitochondrial DNA indicated that mostV. squamosaperennial colonies represented semiclosed systems whereby all individuals belonged to a single matriline despite the presence of multiple reproductive females. However, new queens recruited into perennial colonies apparently mated with non‐nestmate males. Notably, perennial and annual colonies did not show significant genetic differences, supporting the hypothesis that perennial colony formation represents an instance of social plasticity. Overall, our results indicate that perennialV. squamosacolonies show substantial changes to their social biology compared to typical annual colonies and demonstrate variation in social behaviors in highly social species. 
    more » « less