Abstract X-ray photoelectron spectroscopy (XPS) shows that dramatic changes in the core level binding energies can provide strong indications of transitions between more dielectric and more metallic CoFe2O4and NiCo2O4thin films. These significant variations in the XPS core level binding energies are possible with a combination of annealing and oxygen exposure; however, the behaviors of the CoFe2O4and NiCo2O4thin films are very different. The XPS Co and Fe 2p3/2core levels for the CoFe2O4thin film at room temperature show large photovoltaic surface charging, leading to binding energy shifts, characteristic of a highly dielectric (or insulating) surface at room temperature. The photovoltaic charging, observed in the XPS binding energies of the Co and Fe 2p3/2core levels, decreases with increasing temperature. The XPS core level binding energies of CoFe2O4thin film saturated at lower apparent binding energies above 455 K. This result shows that the prepared CoFe2O4thin film can be dielectric at room temperature but become more metallic at elevated temperatures. The dielectric nature of the CoFe2O4thin film was restored only when the film was annealed in sufficient oxygen, indicating that oxygen vacancies play an important role in the transition of the film from dielectric (or insulating) to metallic. In contrast, the XPS studies of initially metallic NiCo2O4thin film demonstrated that annealing NiCo2O4thin film led to a more dielectric or insulating film. The original more metallic character of the NiCo2O4film was restored when the NiCo2O4was annealed in sufficient oxygen. Effective activation energies are estimated for the carriers from a modified Arrhenius-type model applied to the core level binding energy changes of the CoFe2O4and NiCo2O4thin films, as a function of temperature. The origin of the carriers, however, is not uniquely identified. This work illustrates routes to regulate the surface metal-to-insulator transition of dielectric oxides, especially in the case of insulating NiCo2O4thin film that can undergo reversible metal-to-insulator transition with temperature. 
                        more » 
                        « less   
                    
                            
                            An interpretation for the components of 2p 3/2 core level x-ray photoelectron spectra of the cations in some inverse spinel oxides
                        
                    
    
            Abstract In an effort to reconcile the various interpretations for the cation components of the 2p3/2observed in x-ray photoelectron spectroscopy (XPS) of several spinel oxide materials, the XPS spectra of both spinel alloy nanoparticles and crystalline thin films are compared. We observed that different components of the 2p3/2core level XPS spectra, of these inverse spinel thin films, are distinctly surface and bulk weighted, indicating surface-to-bulk core level shifts in the binding energies. Surface-to-bulk core level shifts in binding energies of Ni and Fe 2p3/2core levels of NiFe2O4thin film are observed in angle-resolved XPS. The ratio between surface-weighted components and bulk-weighted components of the Ni and Fe core levels shows appreciable dependency on photoemission angle, with respect to surface normal. XPS showed that the ferrite nanoparticles NixCo1−xFe2O4(x= 0.2, 0.5, 0.8, 1) resemble the surface of the NiFe2O4thin film. Surface-to-bulk core level shifts are also observed in CoFe2O4and NiCo2O4thin films but not as significantly as in NiFe2O4thin film. Estimates of surface stoichiometry of some spinel oxide nanoparticles and thin films suggested that the apportionment between cationic species present could be farther from expectations for thin films as compared to what is seen with nanoparticles. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10511424
- Publisher / Repository:
- IOP
- Date Published:
- Journal Name:
- Journal of Physics: Condensed Matter
- Volume:
- 36
- Issue:
- 28
- ISSN:
- 0953-8984
- Page Range / eLocation ID:
- 285001
- Subject(s) / Keyword(s):
- spinel oxides, x-ray photoelectron spectroscopy, surface-to-bulk core level shift
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Oxidative coupling of methane (OCM) can be performed electrocatalytically by utilizing solid oxide cells, which provide a readily controlled oxygen supply through dense electrolytes. La0.7Sr0.2Ni0.2Fe0.8O3(LSNF) perovskite is an effective anode for OCM. Its surface characteristics and electrocatalytic activity can be improved by reduction and the resultant exsolution of bimetallic NiFe nanoparticles from its bulk. X‐ray diffraction (XRD) and environmental transmission electron microscopy proved that the evolution of hetero‐phases under reducing environment resulted in bimetallic NiFe nanoparticles being formed on the surface. A 36 % improvement in C2+hydrocarbon production rate was achieved due to the reduction of LSNF with the exsolved NiFe nanoparticles. Co‐feeding of H2O enhanced selective conversion of CH4resulting in the production rate of C2+hydrocarbons being increased by 56 %. Analysis of impedance spectra and in‐situ DRIFTS under a CH4+H2O atmosphere provided an understanding for the enhancement on the electrocatalytic OCM.more » « less
- 
            Bimagnetic nanoparticles show promise for applications in energy efficient magnetic storage media and magnetic device applications. The magnetic properties, including the exchange bias of nanostructured materials can be tuned by variation of the size, composition, and morphology of the core vs overlayer of the nanoparticles (NPs). The purpose of this study is to investigate the optimal synthesis routes, structure and magnetic properties of novel CoO/NiFe 2 O 4 heterostructured nanocrystals (HNCs). In this work, we aim to examine how the size impacts the exchange bias, coercivity and other magnetic properties of the CoO/NiFe 2 O 4 HNCs. The nanoparticles with sizes ranging from 10 nm to 24 nm were formed by synthesis of an antiferromagnetic (AFM) CoO core and deposition of a ferrimagnetic (FiM) NiFe 2 O 4 overlayer. A highly crystalline magnetic phase is more likely to occur when the morphology of the core-overgrowth is present, which enhances the coupling at the AFM-FiM interface. The CoO core NPs are prepared using thermal decomposition of Co(OH) 2 at 600 °C for 2 hours in a pure argon atmosphere, whereas the HNCs are obtained first using thermal evaporation followed by hydrothermal synthesis. The structural and morphological characterization made using X-ray diffraction (XRD), high-resolution transmission electron microscopy (HR-TEM), and scanning electron microscopy (SEM) techniques verifies that the HNCs are comprised of a CoO core and a NiFe 2 O 4 overgrowth phase. Rietveld refinement of the XRD data shows that the CoO core has the rocksalt (Fd3 m) crystal structure and the NiFe 2 O 4 overgrowth has the spinel (C12/m1) crystal structure. SEM-EDS data indicates the presence and uniform distribution of Co, Ni and Fe in the HNCs. The results from PPMS magnetization measurements of the CoO/NiFe 2 O 4 HNCs are discussed herein.more » « less
- 
            La 0.7 Sr 0.2 Ni 0.2 Fe 0.8 O 3 (LSNF), having thermochemical stability, superior ionic and electronic conductivity, and structural flexibility, was investigated as a cathode in SOECs. Exsolution of nanoparticles by reduction of LSNF at elevated temperatures can modulate the characteristics of adsorption, electron transfer, and oxidation states of catalytically active atoms, consequently improving the electrocatalytic activity. The exsolution of NiFe and La 2 NiO 4 nanoparticles to the surface of LSNF under reducing atmosphere (5% H 2 /N 2 ) was verified at various temperatures (500–800 °C) by IFFT from ETEM, TPR and in situ XRD. The exsolved nanoparticles obtained uniform size distribution (4.2–9.2 nm) and dispersion (1.31 to 0.61 × 10 4 particle per μm 2 ) depending on the reduction temperature (700–800 °C) and time (0–10 h). The reoxidation of the reduced LSNF (Red-LSNF) was verified by the XRD patterns, indicative of its redox ability, which allows for redistribution of the nanoparticles between the surface and the bulk. TPD-DRIFTS analysis demonstrated that Red-LSNF had superior H 2 O and CO 2 adsorption behavior as compared to unreduced LSNF, which we attributed to the abundance of oxygen vacancy sites and the exsolved NiFe and La 2 NiO 4 nanoparticles. After the reduction of LSNF, the decreases in the oxidation states of the catalytically active ions, Fe and Ni, were characterized on the surface by XPS as well as in the bulk by XANES. The electrochemical performance of the Red-LSNF cell was superior to that of the LSNF cell for electrolysis of H 2 O, CO 2 , and H 2 O/CO 2 .more » « less
- 
            Abstract Strained materials can exhibit drastically modified physical properties in comparison to their fully relaxed analogues. We report on the x-ray absorption spectra (XAS) and magnetic circular dichroism (XMCD) of a strained NiFe 2 O 4 inverse spinel film grown on a symmetry matched single crystal MgGa 2 O 4 substrate. The Ni XAS spectra exhibit a sizable difference in the white line intensity for measurements with the x-ray electric field parallel to the film plane (normal incidence) vs when the electric field is at an angle (off-normal). A considerable difference is also observed in the Fe L 2,3 XMCD spectrum. Modeling of the XAS and XMCD spectra indicate that the modified energy ordering of the cation 3 d states in the strained film leads to a preferential filling of 3 d states with out-of-plane character. In addition, the results point to the utility of x-ray spectroscopy in identifying orbital populations even with elliptically polarized x-rays.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    