skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Contingency Games for Multi-Agent Interaction
Contingency planning, wherein an agent generates a set of possible plans conditioned on the outcome of an uncertain event, is an increasingly popular way for robots to act under uncertainty. In this work we take a game-theoretic perspective on contingency planning, tailored to multi-agent scenarios in which a robot’s actions impact the decisions of other agents and vice versa. The resulting contingency game allows the robot to efficiently interact with other agents by generating strategic motion plans conditioned on multiple possible intents for other actors in the scene. Contingency games are parameterized via a scalar variable which represents a future time when intent uncertainty will be resolved. By estimating this parameter online, we construct a game-theoretic motion planner that adapts to changing beliefs while anticipating future certainty. We show that existing variants of game-theoretic planning under uncertainty are readily obtained as special cases of contingency games. Through a series of simulated autonomous driving scenarios, we demonstrate that contingency games close the gap between certainty-equivalent games that commit to a single hypothesis and non-contingent multi-hypothesis games that do not account for future uncertainty reduction.  more » « less
Award ID(s):
2211548
PAR ID:
10511428
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
IEEE Robotics and Automation Letters
Volume:
9
Issue:
3
ISSN:
2377-3774
Page Range / eLocation ID:
2208 to 2215
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. To overcome the sim-to-real gap in reinforcement learning (RL), learned policies must maintain robustness against environmental uncertainties. While robust RL has been widely studied in single-agent regimes, in multi-agent environments, the problem remains understudied-- despite the fact that the problems posed by environmental uncertainties are often exacerbated by strategic interactions. This work focuses on learning in distributionally robust Markov games (RMGs), a robust variant of standard Markov games, wherein each agent aims to learn a policy that maximizes its own worst-case performance when the deployed environment deviates within its own prescribed uncertainty set. This results in a set of robust equilibrium strategies for all agents that align with classic notions of game-theoretic equilibria. Assuming a non-adaptive sampling mechanism from a generative model, we propose a sample-efficient model-based algorithm (DRNVI) with finite-sample complexity guarantees for learning robust variants of various notions of game-theoretic equilibria. We also establish an information-theoretic lower bound for solving RMGs, which confirms the near-optimal sample complexity of DR-NVI with respect to problem-dependent factors such as the size of the state space, the target accuracy, and the horizon length. 
    more » « less
  2. Digital games featuring programmable agents are popular tools for teaching coding and computational thinking skills. However, today's games perpetuate an arguably obsolete relationship between programmable agents and human operators. Borrowing from the field of human-robotics interaction, we argue that collaborative robots, or cobots, are a better model for thinking about computational agents, working directly with humans rather than in place of or at arm's length from them. In this paper, we describe an initial design inquiry into the design of “cobot games”, programmable agent scenarios in which players program an in-game ally to assist them in accomplishing gameplay objectives. We detail three questions that emerged out of this exploration, our present thinking on them, and plans for deepening inquiry into cobot game design moving forward. 
    more » « less
  3. Effectively predicting intent and behavior requires inferring leadership in multi-agent interactions. Dynamic games provide an expressive theoretical framework for modeling these interactions. Employing this framework, we propose a novel method to infer the leader in a two-agent game by observing the agents’ behavior in complex, long-horizon interactions. We make two con- tributions. First, we introduce an iterative algorithm that solves dynamic two-agent Stackelberg games with nonlinear dynamics and nonquadratic costs, and demonstrate that it consistently converges in repeated trials. Second, we propose the Stackelberg Leadership Filter (SLF), an online method for identifying the leading agent in interactive scenarios based on observations of the game interactions. We validate the leadership filter’s efficacy on simulated driving scenarios to demonstrate that the SLF can draw conclusions about leadership that match right-of-way expectations. 
    more » « less
  4. We provide a polynomial-time, scalable algorithm for equilibrium computation in multi-agent influence games on networks, extending work of Bindel, Kleinberg, and Oren (2015) from the single-agent to the multi-agent setting. In games of influence, agents have limited advertising budget to influence the initial predisposition of nodes in some network towards their products, but the eventual decisions of the nodes are determined by the stationary state of DeGroot opinion dynamics on the network, which takes over after the seeding (Ahmadinejad et al. 2014, 2015). In multi-agent systems, how should agents spend their budgets to seed the network to maximize their utility in anticipation of other advertising agents and the network dynamics? We show that Nash equilibria of this game are pure and (under weak assumptions) unique, and can be computed in polynomial time; we test our model by computing equilibria using mirror descent for the two-agent case on random graphs. 
    more » « less
  5. In a group anagram game, players are provided letters to form as many words as possible. They can also request letters from their neighbors and reply to letter requests. Currently, a single agent-based model is produced from all experimental data, with dependence only on number of neighbors. In this work, we build, exercise, and evaluate enhanced agent behavior models for networked group anagram games under an uncertainty quantification framework. Specifically, we cluster game data for players based on their skill levels (forming words, requesting letters, and replying to requests), perform multinomial logistic regression for transition probabilities, and quantify uncertainty within each cluster. The result of this process is a model where players are assigned different numbers of neighbors and different skill levels in the game. We conduct simulations of ego agents with neighbors to demonstrate the efficacy of our proposed methods. 
    more » « less