Abstract This paper proposes a computational method to reconstruct both the birth and mortality coefficients in an age-structured population diffusive model. In mathematical oncology, solving this inverse problem is crucial for assessing the effectiveness of anti-cancer treatments and thus, gaining insights into the post-treatment dynamics of tumors. Through some linear and nonlinear transformations, the targeted inverse model is transformed into an auxiliary third-order nonlinear PDE. Subsequently, a coupled age-dependent quasi-linear parabolic PDE system is derived using the Fourier–Klibanov basis. The resulting PDE system is then approximated through the minimization of a cost functional, weighted by a suitable Carleman function. Ultimately, an analysis of the minimization problem is studied through a new Carleman estimate, and some computational results are presented to show how the proposed method works.
more »
« less
An explicit Fourier-Klibanov method for an age-dependent tumor growth model of Gompertz type
This paper proposes an explicit Fourier-Klibanov method as a new approximation technique for an age-dependent population PDE of Gompertz type in modeling the evolution of tumor density in a brain tissue. Through suitable nonlinear and linear transformations, the Gompertz model of interest is transformed into an auxiliary third-order nonlinear PDE. Then, a coupled transport-like PDE system is obtained via an application of the Fourier-Klibanov method, and, thereby, is approximated by the explicit finite difference operators of characteristics. The stability of the resulting difference scheme is analyzed under the standard 2-norm topology. Finally, we present some computational results to demonstrate the effectiveness of the proposed method.
more »
« less
- Award ID(s):
- 2316603
- PAR ID:
- 10511510
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Applied Numerical Mathematics
- Volume:
- 198
- Issue:
- C
- ISSN:
- 0168-9274
- Page Range / eLocation ID:
- 401 to 418
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A partial differential equation (PDE) constrained design optimization problem usually optimizes a characteristic of a dynamical system around an equilibrium point. However, a commonly omitted constraint is the linear stability constraint at the equilibrium point, which undermines the optimized solution’s applicability. To enforce the linear stability constraint in practical gradient-based optimization, the derivatives must be computed accurately, and their computational cost must scale favorably with the number of design variables. In this paper, we propose an algorithm based on the coupled adjoint method and the algorithmic differentiation method that can compute the derivative of such constraint accurately and efficiently. We verify the proposed method using several simple low-dimensional dynamical systems. The relative difference between the adjoint method and the finite differences is between [Formula: see text] to [Formula: see text]. The proposed method is demonstrated through several optimizations, including a nonlinear aeroelastic optimization. The proposed algorithm has the potential to be applied to more complex problems involving large-scale nonlinear PDEs, such as aircraft flutter and buffet suppression.more » « less
-
Abstract We consider the numerical solution of the optimal transport problem between densities that are supported on sets of unequal dimension. Recent work by McCann and Pass reformulates this problem into a non-local Monge-Ampère type equation. We provide a new level-set framework for interpreting this nonlinear PDE. We also propose a novel discretisation that combines carefully constructed monotone finite difference schemes with a variable-support discrete version of the Dirac delta function. The resulting method is consistent and monotone. These new techniques are described and implemented in the setting of 1D to 2D transport, but they can easily be generalised to higher dimensions. Several challenging computational tests validate the new numerical method.more » « less
-
Abstract An explicit spectrally accurate order-adaptive Hermite-Taylor method for the Schrödinger equation is developed. Numerical experiments illustrating the properties of the method are presented. The method, which is able to use very coarse grids while still retaining high accuracy, compares favorably to an existing exponential integrator – high order summation-by-parts finite difference method.more » « less
-
Abstract Identifying the governing equations of a nonlinear dynamical system is key to both understanding the physical features of the system and constructing an accurate model of the dynamics that generalizes well beyond the available data. Achieving this kind of interpretable system identification is even more difficult for partially observed systems. We propose a machine learning framework for discovering the governing equations of a dynamical system using only partial observations, combining an encoder for state reconstruction with a sparse symbolic model. The entire architecture is trained end-to-end by matching the higher-order symbolic time derivatives of the sparse symbolic model with finite difference estimates from the data. Our tests show that this method can successfully reconstruct the full system state and identify the equations of motion governing the underlying dynamics for a variety of ordinary differential equation (ODE) and partial differential equation (PDE) systems.more » « less
An official website of the United States government

