skip to main content


This content will become publicly available on September 1, 2024

Title: Numerical Verification of the Convexification Method for a Frequency-Dependent Inverse Scattering Problem with Experimental Data
The reconstruction of physical properties of a medium from boundary measurements, known as inverse scattering problems, presents significant challenges. The present study aims to validate a newly developed convexification method for a 3D coefficient inverse problem in the case of buried unknown objects in a sandbox, using experimental data collected by a microwave scattering facility at The University of North Carolina at Charlotte. Our study considers the formulation of a coupled quasilinear elliptic system based on multiple frequencies. The system can be solved by minimizing a weighted Tikhonov-like functional, which forms our convexification method. Theoretical results related to the convexification are also revisited in this work.  more » « less
Award ID(s):
2316603
NSF-PAR ID:
10511511
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Springer
Date Published:
Journal Name:
Journal of Applied and Industrial Mathematics
Volume:
17
Issue:
4
ISSN:
1990-4789
Page Range / eLocation ID:
908 to 927
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    This paper is concerned with the inverse scattering problem which aims to determine the spatially distributed dielectric constant coefficient of the 2D Helmholtz equation from multifrequency backscatter data associated with a single direction of the incident plane wave. We propose a globally convergent convexification numerical algorithm to solve this nonlinear and ill-posed inverse problem. The key advantage of our method over conventional optimization approaches is that it does not require a good first guess about the solution. First, we eliminate the coefficient from the Helmholtz equation using a change of variables. Next, using a truncated expansion with respect to a special Fourier basis, we approximately reformulate the inverse problem as a system of quasilinear elliptic PDEs, which can be numerically solved by a weighted quasi-reversibility approach. The cost functional for the weighted quasi-reversibility method is constructed as a Tikhonov-like functional that involves a Carleman Weight Function. Our numerical study shows that, using a version of the gradient descent method, one can find the minimizer of this Tikhonov-like functional without any advanced a priori knowledge about it. 
    more » « less
  2. We investigate the inverse scattering problem for scalar waves. We report conditions under which the terms in the inverse Born series cancel in pairs, leaving only one term at each order. We refer to the resulting expansion as the reduced inverse Born series. The reduced series can also be derived from a nonperturbative inversion formula. Our results are illustrated by numerical simulations that compare the performance of the reduced series to the full inverse Born series and the Newton–Kantorovich method.

     
    more » « less
  3. Abstract

    We consider the use of rational basis functions to compute the scattering and inverse scattering transforms associated with the AKNS (Ablowitz–Kaup–Newell–Segur) system. The proposed numerical forward scattering transform computes the solution of the AKNS system that is valid on the entire real axis and thereby computes a reflection coefficient at a point by solving a single linear system. The proposed numerical inverse scattering transform makes use of a novel improvement in the rational function approach to the oscillatory Cauchy operator, enabling the efficient solution of certain Riemann–Hilbert problems without contour deformations. The latter development enables access to high‐precision computations and this is demonstrated on the inverse scattering transform for the one‐dimensional Schrödinger operator with a potential.

     
    more » « less
  4. This work extends the applicability of our recent convexification- based algorithm for constructing images of the dielectric constant of buried or occluded target. We are orientated towards the detection of explosive-like targets such as antipersonnel land mines and improvised explosive devices in the non-invasive inspections of buildings. In our previous work, the method is posed in the perspective that we use multiple source locations running along a line of source to get a 2D image of the dielectric function. Mathematically, we solve a 1D coefficient inverse problem for a hyperbolic equation for each source location. Different from any conventional Born approximation-based technique for synthetic-aperture radar, this method does not need any linearization. In this paper, we attempt to verify the method using several 3D numerical tests with simulated data. We revisit the global convergence of the gradient descent method of our computational approach. 
    more » « less
  5. Nguyen, Dinh-Liem ; Nguyen, Loc ; Nguyen, Thi-Phong (Ed.)
    This paper is concerned with the numerical solution to the direct and inverse electromagnetic scattering problem for bi-anisotropic periodic structures. The direct problem can be reformulated as an integro-di erential equation. We study the existence and uniqueness of solution to the latter equation and analyze a spectral Galerkin method to solve it. This spectral method is based on a periodization technique which allows us to avoid the evaluation of the quasiperiodic Green's tensor and to use the fast Fourier transform in the numerical implementation of the method. For the inverse problem, we study the orthogonality sampling method to reconstruct the periodic structures from scattering data generated by only two incident fields. The sampling method is fast, simple to implement, regularization free, and very robust against noise in the data. Numerical examples for both direct and inverse problems are presented to examine the efficiency of the numerical solvers. 
    more » « less