Lepton universality (LU) typically refers to the lepton coupling, which is considered to be the same for
All experiments observing dilepton pairs (e.g.
- NSF-PAR ID:
- 10511514
- Publisher / Repository:
- https://iopscience.iop.org/
- Date Published:
- Journal Name:
- Journal of Instrumentation
- Volume:
- 18
- Issue:
- 10
- ISSN:
- 1748-0221
- Page Range / eLocation ID:
- P10032
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract e ,μ , andτ leptons, if the interaction is electroweak according to the Standard Model, and it is hence a compelling probe for New Physics. The same principle of universal electroweak lepton interaction leads to the expectation that lepton scattering yields are equal fore andμ beams under the same kinematic condition. The mere mass difference betweene andμ affects kinematic quantities (such as the relation between scattering angle andQ 2), and the lepton mass dependence of elastic cross sections for leptons scattered from structured and pointlike objects are taken into account. By comparinge +,e −,μ +, andμ −scattering yields, two-photon exchange (TPE) effects, universal or not, can be separated from the general LU test of thee /μ yield ratio. With its separable mixed beams ofe +/μ +ande −/μ −, respectively, the MUSE experiment at PSI is not only designed to measure the proton charge radius with four lepton species, but is also uniquely suited to probe TPE and LU, while benefitting from partial cancellations of certain shared systematics. An overview will be given of the MUSE experiment, the sensitivity, and the present status. -
Abstract Reactions of the IrVhydride [MeBDIDipp]IrH4{BDI=(Dipp)NC(Me)CH(Me)CN(Dipp); Dipp=2,6‐
i Pr2C6H3} with E[N(SiMe3)2]2(E=Sn, Pb) afforded the unusual dimeric dimetallotetrylenes ([MeBDIDipp]IrH)2(μ 2‐E)2in good yields. Moreover, ([MeBDIDipp]IrH)2(μ 2‐Ge)2was formed in situ from thermal decomposition of [MeBDIDipp]Ir(H)2Ge[N(SiMe3)2]2. These reactions are accompanied by liberation of HN(SiMe3)2and H2through the apparent cleavage of an E−N(SiMe3)2bond by Ir−H. In a reversal of this process, ([MeBDIDipp]IrH)2(μ 2‐E)2reacted with excess H2to regenerate [MeBDIDipp]IrH4. Varying the concentrations of reactants led to formation of the trimeric ([MeBDIDipp]IrH2)3(μ 2‐E)3. The further scope of this synthetic route was investigated with group 15 amides, and ([MeBDIDipp]IrH)2(μ 2‐Bi)2was prepared by the reaction of [MeBDIDipp]IrH4with Bi(NMe2)3or Bi(Ot Bu)3to afford the first example of a “naked” two‐coordinate Bi atom bound exclusively to transition metals. A viable mechanism that accounts for the formation of these products is proposed. Computational investigations of the Ir2E2(E=Sn, Pb) compounds characterized them as open‐shell singlets with confined nonbonding lone pairs at the E centers. In contrast, Ir2Bi2is characterized as having a closed‐shell singlet ground state. -
Abstract We use PHANGS–James Webb Space Telescope (JWST) data to identify and classify 1271 compact 21
μ m sources in four nearby galaxies using MIRI F2100W data. We identify sources using a dendrogram-based algorithm, and we measure the background-subtracted flux densities for JWST bands from 2 to 21μ m. Using the spectral energy distribution (SED) in JWST and HST bands plus ALMA and MUSE/VLT observations, we classify the sources by eye. Then we use this classification to define regions in color–color space and so establish a quantitative framework for classifying sources. We identify 1085 sources as belonging to the ISM of the target galaxies with the remainder being dusty stars or background galaxies. These 21μ m sources are strongly spatially associated with Hii regions (>92% of sources), while 74% of the sources are coincident with a stellar association defined in the HST data. Using SED fitting, we find that the stellar masses of the 21μ m sources span a range of 102–104M ⊙with mass-weighted ages down to 2 Myr. There is a tight correlation between attenuation-corrected Hα and 21μ m luminosity forL ν ,F2100W> 1019W Hz−1. Young embedded source candidates selected at 21μ m are found below this threshold and haveM ⋆< 103M ⊙. -
Abstract With ΣSFR∼ 4200
M ⊙yr−1kpc−2, SPT 0346–52 (z = 5.7) is the most intensely star-forming galaxy discovered by the South Pole Telescope. In this paper, we expand on previous spatially resolved studies, using ALMA observations of dust continuum, [Nii ] 205μ m, [Cii ] 158μ m, [Oi ] 146μ m, and undetected [Nii ] 122μ m and [Oi ] 63μ m emission to study the multiphase interstellar medium (ISM) in SPT 0346–52. We use pixelated, visibility-based lens modeling to reconstruct the source-plane emission. We also model the source-plane emission using the photoionization codecloudy and find a supersolar metallicity system. We calculateT dust= 48.3 K andλ peak= 80μ m and see line deficits in all five lines. The ionized gas is less dense than comparable galaxies, withn e < 32 cm−3, while ∼20% of the [Cii ] 158μ m emission originates from the ionized phase of the ISM. We also calculate the masses of several phases of the ISM. We find that molecular gas dominates the mass of the ISM in SPT 0346–52, with the molecular gas mass ∼4× higher than the neutral atomic gas mass and ∼100× higher than the ionized gas mass. -
A bstract We report a search for the charged-lepton flavor violation in Υ(2
S ) →ℓ ∓τ ± (ℓ =e, μ ) decays using a 25 fb− 1Υ(2S ) sample collected by the Belle detector at the KEKBe +e − asymmetric-energy collider. We find no evidence for a signal and set upper limits on the branching fractions ( ) at 90% confidence level. We obtain the most stringent upper limits:$$ \mathcal{B} $$ (Υ(2$$ \mathcal{B} $$ S )→ μ ∓τ ± )< 0. 23× 10− 6and (Υ(2$$ \mathcal{B} $$ S )→ e ∓τ ± )< 1. 12× 10− 6.