Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract All experiments observing dilepton pairs (e.g.e+e-, μ+μ-) must confront the existence of acombinatoricbackground caused by the combining of tracks not arising from the same physics vertex. Some method must be devised to calculate and remove this background. In this document we describe a particular event-mixing method relying on many of the unique aspects of the SeaQuest spectrometer and data. The method described here calculates the combinatoric background with correct normalization; i.e., there is no need to assign a floating normalization factor that is then determined in a subsequent fitting procedure. Numerous tests are applied to demonstrate the reliability of the method.more » « less
-
Nucleon structure functions, as measured in lepton-nucleon scattering, have historically provided a critical observable in the study of partonic dynamics within the nucleon. However, at very large parton momenta, it is both experimentally and theoretically challenging to extract parton distributions due to the probable onset of nonperturbative contributions and the unavailability of high-precision data at critical kinematics. Extraction of the neutron structure and the d quark distribution have been further challenging because of the necessity of applying nuclear corrections when utilizing scattering data from a deuteron target to extract the free neutron structure. However, a program of experiments has been carried out recently at the energy-upgraded Jefferson Lab electron accelerator aimed at significantly reducing the nuclear correction uncertainties on the d quark distribution function at large partonic momentum. This allows leveraging the vast body of deuterium data covering a large kinematic range to be utilized for d quark parton distribution function extraction. In this Letter, we present new data from experiment E12-10-002, carried out in Jefferson Lab Experimental Hall C, on the deuteron to proton cross section ratio at large Bjorken . These results significantly improve the precision of existing data and provide a first look at the expected impact on quark distributions extracted from parton distribution function fits.more » « lessFree, publicly-accessible full text available October 1, 2026
-
Free, publicly-accessible full text available September 1, 2026
-
Free, publicly-accessible full text available June 1, 2026
An official website of the United States government
