Transcranial electrical stimulation (tES) technology and neuroimaging are increasingly coupled in basic and applied science. This synergy has enabled individualized tES therapy and facilitated causal inferences in functional neuroimaging. However, traditional tES paradigms have been stymied by relatively small changes in neural activity and high inter-subject variability in cognitive effects. In this perspective, we propose a tES framework to treat these issues which is grounded in dynamical systems and control theory. The proposed paradigm involves a tight coupling of tES and neuroimaging in which M/EEG is used to parameterize generative brain models as well as control tES delivery in a hybrid closed-loop fashion. We also present a novel quantitative framework for cognitive enhancement driven by a new computational objective: shaping how the brain reacts to potential “inputs” (e.g., task contexts) rather than enforcing a fixed pattern of brain activity.
more »
« less
Neuroethical and Social Implications of Using Transcranial Electrical Stimulation to Augment Creative Cognition
Recent research indicates that transcranial electrical stimulation (tES) of specific brain regions can successfully improve various forms of creative cognition. Although the endeavor to increase human creative capacity is intriguing from a neuroscientific perspective, and of interest to the general public, it raises numerous neuroethico-legal and social issues (NELSI). This review explores these issues by considering (a) whether using brain stimulation to improve creative cognition qualifies as a ‘treatment’ or an ‘enhancement,’ (b) how direct-to-consumer (DTC) and do-it-yourself (DIY) use of tES should be regarded and regulated, and (c) what the developing landscape of creativity-related neurostimulation could (and should) become.
more »
« less
- Award ID(s):
- 1661065
- PAR ID:
- 10511582
- Publisher / Repository:
- Taylor and Francis
- Date Published:
- Journal Name:
- Creativity Research Journal
- Volume:
- 30
- Issue:
- 3
- ISSN:
- 1040-0419
- Page Range / eLocation ID:
- 249 to 255
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
BackgroundRetinal degeneration is a major cause of irreversible blindness. Stimulation with controlled low-level electrical fields, such as transcorneal electrical stimulation (TES), has recently been postulated as a therapeutic strategy. With promising results, there is a need for detailed molecular characterization of the therapeutic effects of TES. MethodsControlled, non-invasive TES was delivered using a custom contact lens electrode to the retinas of Royal College of Surgeons (RCS) rats, a model of retinal degeneration. DNA methylation in the retina, brain and cell-free DNA in plasma was assessed by reduced representation bisulfite sequencing (RRBS) and gene expression by RNA sequencing. ResultsTES induced DNA methylation and gene expression changes implicated in neuroprotection in the retina of RCS rats. We devised an epigenomic-based retinal health score, derived from DNA methylation changes observed with disease progression in RCS rats, and showed that TES improved the epigenomic health of the retina. TES also induced DNA methylation changes in the superior colliculus: the brain which is involved in integrating visual signaling. Lastly, we demonstrated that TES-induced retinal DNA methylation changes were detectable in cell-free DNA derived from plasma. ConclusionTES induced DNA methylation changes with therapeutic effects, which can be measured in circulation. Based on these changes, we were able to devise a liquid biopsy biomarker for retinal health. These findings shed light on the therapeutic potential and molecular underpinnings of TES, and provide a foundation for the further development of TES to improve the retinal health of patients with degenerative eye diseases.more » « less
-
Understanding the relationship between cognition and programming outcomes is important: it can inform interventions that help novices become experts faster. Neuroimaging techniques can measure brain activity, but prior studies of programming report only correlations. We present the first causal neurological investigation of the cognition of programming by using Transcranial Magnetic Stimulation (TMS). TMS permits temporary and noninvasive disruption of specific brain regions. By disrupting brain regions and then measuring programming outcomes, we discover whether a true causal relationship exists. To the best of our knowledge, this is the first use of TMS to study software engineering. Where multiple previous studies reported correlations, we find no direct causal relationships between implicated brain regions and programming. Using a protocol that follows TMS best practices and mitigates for biases, we replicate psychology findings that TMS affects spatial tasks. We then find that neurostimulation can affect programming outcomes. Multi-level regression analysis shows that TMS stimulation of different regions significantly accounts for 2.2% of the variance in task completion time. Our results have implications for interventions in education and training as well as research into causal cognitive relationships.more » « less
-
Wixted, John T (Ed.)Advancements in neuroscience, technology, and psychology have led to developments with various brain stimulation techniques for modulating memory. Findings from diverse methodologies are reviewed with a focus on transcranial magnetic or electrical stimulation. These offer numerous non-invasive approaches to target and modulate neurocognitive processes and brain networks that support memory encoding, consolidation, and retrieval. Research has shown enhancements, impairments, and null effects on memory in both healthy individuals and those with memory-related disorders. Methodological considerations are discussed to enhance research rigor and clinical applicability. Elucidating the impact of brain stimulation on memory provides valuable insights into cognition and neurological function, and will help shape future research and clinical practices.more » « less
-
null (Ed.)Abstract Creative cognition has been consistently associated with functional connectivity between frontoparietal control and default networks. However, recent research identified distinct connectivity dynamics for subnetworks within the larger frontoparietal system—one subnetwork (FPCNa) shows positive coupling with the default network and another subnetwork (FPCNb) shows negative default coupling—raising questions about how these networks interact during creative cognition. Here we examine frontoparietal subnetwork functional connectivity in a large sample of participants (n = 171) who completed a divergent creative thinking task and a resting-state scan during fMRI. We replicated recent findings on functional connectivity of frontoparietal subnetworks at rest: FPCNa positively correlated with the default network and FPCNb negatively correlated with the default network. Critically, we found that divergent thinking evoked functional connectivity between both frontoparietal subnetworks and the default network, but in different ways. Using community detection, we found that FPCNa regions showed greater coassignment to a default network community. However, FPCNb showed overall stronger functional connectivity with the default network—reflecting a reversal of negative connectivity at rest—and the strength of FPCNb-default network connectivity correlated with individual creative ability. These findings provide novel evidence of a behavioral benefit to the cooperation of typically anticorrelated brain networks.more » « less
An official website of the United States government

