Abstract We consider the problem of optimal investment with intermediate consumption in a general semimartingale model of an incomplete market, with preferences being represented by a utility stochastic field. We show that the key conclusions of the utility maximization theory hold under the assumptions of no unbounded profit with bounded risk and of the finiteness of both primal and dual value functions.
more »
« less
Background Risk and Small-Stakes Risk Aversion
Building on Pomatto, Strack, and Tamuz (2020), we identify a tight condition for when background risk can induce first-order stochastic dominance. Using this condition, we show that under plausible levels of background risk, no theory of choice under risk can simultaneously satisfy the following three economic postulates: (i) decision-makers are risk averse over small gambles, (ii) their preferences respect stochastic dominance, and (iii) they account for background risk. This impossibility result applies to expected utility theory, prospect theory, rank-dependent utility, and many other models. (JEL D81, D91)
more »
« less
- Award ID(s):
- 1944153
- PAR ID:
- 10511608
- Publisher / Repository:
- American Economic Association
- Date Published:
- Journal Name:
- American Economic Review: Insights
- Volume:
- 6
- Issue:
- 2
- ISSN:
- 2640-205X
- Page Range / eLocation ID:
- 262 to 276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A classic reachability problem for safety of dynamic systems is to compute the set of initial states from which the state trajectory is guaranteed to stay inside a given constraint set over a given time horizon. In this paper, we leverage existing theory of reachability analysis and risk measures to devise a risk-sensitive reachability approach for safety of stochastic dynamic systems under non-adversarial disturbances over a finite time horizon. Specifically, we first introduce the notion of a risk-sensitive safe set asa set of initial states from which the risk of large constraint violations can be reduced to a required level via a control policy, where risk is quantified using the Conditional Value-at-Risk(CVaR) measure. Second, we show how the computation of a risk-sensitive safe set can be reduced to the solution to a Markov Decision Process (MDP), where cost is assessed according to CVaR. Third, leveraging this reduction, we devise a tractable algorithm to approximate a risk-sensitive safe set and provide arguments about its correctness. Finally, we present a realistic example inspired from stormwater catchment design to demonstrate the utility of risk-sensitive reachability analysis. In particular, our approach allows a practitioner to tune the level of risk sensitivity from worst-case (which is typical for Hamilton-Jacobi reachability analysis) to risk-neutral (which is the case for stochastic reachability analysis).more » « less
-
A classic reachability problem for safety of dynamic systems is to compute the set of initial states from which the state trajectory is guaranteed to stay inside a given constraint set over a given time horizon. In this paper, we leverage existing theory of reachability analysis and risk measures to devise a risk-sensitive reachability approach for safety of stochastic dynamic systems under non-adversarial disturbances over a finite time horizon. Specifically, we first introduce the notion of a risk-sensitive safe set as a set of initial states from which the risk of large constraint violations can be reduced to a required level via a control policy, where risk is quantified using the Conditional Value-at-Risk (CVaR) measure. Second, we show how the computation of a risk-sensitive safe set can be reduced to the solution to a Markov Decision Process (MDP), where cost is assessed according to CVaR. Third, leveraging this reduction, we devise a tractable algorithm to approximate a risk-sensitive safe set, and provide theoretical arguments about its correctness. Finally, we present a realistic example inspired from stormwater catchment design to demonstrate the utility of risk-sensitive reachability analysis. In particular, our approach allows a practitioner to tune the level of risk sensitivity from worst-case (which is typical for Hamilton-Jacobi reachability analysis) to risk-neutral (which is the case for stochastic reachability analysis).more » « less
-
A classic reachability problem for safety of dynamic systems is to compute the set of initial states from which the state trajectory is guaranteed to stay inside a given constraint set over a given time horizon. In this paper, we leverage existing theory of reachability analysis and risk measures to devise a risk-sensitive reachability approach for safety of stochastic dynamic systems under non-adversarial disturbances over a finite time horizon. Specifically, we first introduce the notion of a risk-sensitive safe set as a set of initial states from which the risk of large constraint violations can be reduced to a required level via a control policy, where risk is quantified using the Conditional Value-at-Risk (CVaR) measure. Second, we show how the computation of a risk-sensitive safe set can be reduced to the solution to a Markov Decision Process (MDP), where cost is assessed according to CVaR. Third, leveraging this reduction, we devise a tractable algorithm to approximate a risk-sensitive safe set, and provide theoretical arguments about its correctness. Finally, we present a realistic example inspired from stormwater catchment design to demonstrate the utility of risk-sensitive reachability analysis. In particular, our approach allows a practitioner to tune the level of risk sensitivity from worst-case (which is typical for Hamilton-Jacobi reachability analysis) to risk-neutral (which is the case for stochastic reachability analysis).more » « less
-
The expectation is an example of a descriptive statistic that is monotone with respect to stochastic dominance, and additive for sums of independent random variables. We provide a complete characterization of such statistics, and explore a number of applications to models of individual and group decision‐making. These include a representation of stationary monotone time preferences, extending the work of Fishburn and Rubinstein (1982) to time lotteries. This extension offers a new perspective on risk attitudes toward time, as well as on the aggregation of multiple discount factors. We also offer a novel class of non‐expected utility preferences over gambles which satisfy invariance to background risk as well as betweenness, but are versatile enough to capture mixed risk attitudes.more » « less
An official website of the United States government

