ABSTRACT The goal of the MRI4ALL hackathon, which took place in October 2023, was to develop a functional low‐field MRI scanner in just one week and to release all created source code and resources as open‐source packages. The event was attended by 52 participants from 16 institutions who assembled the scanner on the last day of the hackathon. The scanner's magnetic B0field with a strength of 43 mT and a target field‐of‐view size of 11 cm3was created with a Halbach array made from 990 N40UH permanent magnets, held in place using 3D printed ring formers. Gradient coils were fabricated by gluing enameled copper wire onto 3D printed holders with imprinted wire patterns. A solenoid coil for RF transmission and reception was built by winding 20 turns of Litz wire around a 3D printed cylinder. A Red Pitaya FPGA prototyping board running the MaRCoS framework was used to control the scanner components, and a GPA‐FHDO amplifier board was used to drive the gradients. To simplify the scanner's operation, console software with an intuitive graphical user interface was developed in Python using the PyPulseq package for sequence calculations. Furthermore, the scanner was equipped with a cooling system, as well as options for passive and active shimming. After resolving several technical issues that arose during the assembly, the scanner is now able to acquire MR images with different sequences. While not suitable for real‐world clinical applications, it can be utilized for educational purposes or as a low‐cost prototyping platform. Moreover, it may serve as a reference design for future MRI development projects. All source code and resources are available on the project websitemri4all.org, allowing other groups to replicate the scanner. Evidence Leveln/a Technical EfficacyStage 1. 
                        more » 
                        « less   
                    
                            
                            Hybrid active and passive local shimming (HAPLS) for two‐region MRI
                        
                    
    
            PurposeAn MRI scanner is equipped with global shim systems for shimming one region of interest (ROI) only. However, it often fails to reach state‐of‐the‐art when shimming two isolated regions of interest simultaneously, even though the two‐area shimming can be essential in scan scenarios, such as bilateral breasts or dyadic brains. To address these challenges, a hybrid active and passive local shimming technique is proposed to simultaneously shim two isolated region‐of‐interest areas within the whole FOV. MethodsA local passive shimming system is constructed by optimized bilateral ferromagnetic chip arrays to compensate for the magnet's significant high‐order B0inhomogeneities at the boundary of the manufacturer's specified homogeneous volume, thus locally improving the available FOV. The local active shimming consists of 40‐channel DC loops powered by 64‐channel current amplifiers. With the optimized current distribution, active shimming can correct the residual low‐order B0inhomogeneities and subject‐specific field inhomogeneities. In addition, active shimming is used to homogenize the center frequencies of the two regions. ResultsWith the implementation of the hybrid active and passive local shimming, the 95% peak‐to‐peak was reduced from 1.92 to 1.12 ppm by 41.7%, and RMS decreased from 0.473 to 0.255 ppm by 46.1% in a two‐phantom experiment. The volume ratio containing MR voxels within a 0.5‐ppm frequency span increased from 64.3% to 81.3% by 26.3%. ConclusionThe proposed hybrid active and passive local shimming technique uses both passive and active local shimming, and it can efficiently shim two areas simultaneously, which is an unmet need for a commercial MRI scanner. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1926789
- PAR ID:
- 10511643
- Publisher / Repository:
- Magnetic resonance in medicine
- Date Published:
- Journal Name:
- Magnetic Resonance in Medicine
- Volume:
- 89
- Issue:
- 4
- ISSN:
- 0740-3194
- Page Range / eLocation ID:
- 1660 to 1673
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract PurposeTo determine the feasibility of simultaneous multi‐slice (SMS) real‐time MRI (RT‐MRI) at 0.55T for the evaluation of cardiac function. MethodsCardiac CINE MRI is routinely used to evaluate left‐ventricular (LV) function. The standard is sequential multi‐slice balanced SSFP (bSSFP) over a stack of short‐axis slices using electrocardiogram (ECG) gating and breath‐holds. SMS has been used in CINE imaging to reduce the number of breath‐holds by a factor of 2–4 at 1.5T, 3T, and recently at 0.55T. This work aims to determine if SMS is similarly effective in the RT‐MRI evaluation of cardiac function. We used an SMS bSSFP pulse sequence with golden‐angle spirals at 0.55T with an SMS factor of three. We cover the LV with three acquisitions for SMS, and nine for single‐band (SB). Imaging was performed on 9 healthy volunteers and 1 patient with myocardial fibrosis and sternal wires. A spatio‐temporal constrained reconstruction is used, with regularization parameters selected by a board‐certified cardiologist. Images were quantitatively analyzed with a normalized contrast and an Edge Sharpness (ES) score. ResultsThere was a statistically significant 2‐fold difference in contrast between SMS and SB and no significant difference in ES score. The contrast for SMS and SB were 13.38/29.05 at mid‐diastole and 10.79/22.26 at end‐systole; the ES scores for SMS and SB were 1.77/1.83 at mid‐diastole and 1.50/1.72 at end‐systole. ConclusionsSMS cardiac RT‐MRI at 0.55T is feasible and provides sufficient blood‐myocardium contrast to evaluate LV function in three slices simultaneously without any gating or periodic motion assumptions.more » « less
- 
            Abstract PurposeTo demonstrate speech‐production real‐time MRI (RT‐MRI) using a contemporary 0.55T system, and to identify opportunities for improved performance compared with conventional field strengths. MethodsExperiments were performed on healthy adult volunteers using a 0.55T MRI system with high‐performance gradients and a custom 8‐channel upper airway coil. Imaging was performed using spiral‐based balancedSSFPand gradient‐recalled echo (GRE) pulse sequences using a temporal finite‐difference constrained reconstruction. Speech‐production RT‐MRI was performed with three spiral readout durations (8.90, 5.58, and 3.48 ms) to determine trade‐offs with respect to articulator contrast, blurring, banding artifacts, and overall image quality. ResultsBoth spiral GRE and bSSFP captured tongue boundary dynamics during rapid consonant‐vowel syllables. Although bSSFP provided substantially higher SNR in all vocal tract articulators than GRE, it suffered from banding artifacts at TR > 10.9 ms. Spiral bSSFP with the shortest readout duration (3.48 ms, TR = 5.30 ms) had the best image quality, with a 1.54‐times boost in SNR compared with an equivalent GRE sequence. Longer readout durations led to increased SNR efficiency and blurring in both bSSFP and GRE. ConclusionHigh‐performance 0.55T MRI systems can be used for speech‐production RT‐MRI. Spiral bSSFP can be used without suffering from banding artifacts in vocal tract articulators, provide better SNR efficiency, and have better image quality than what is typically achieved at 1.5 T or 3 T.more » « less
- 
            Abstract PurposeBreath‐held fat‐suppressed volumetric T1‐weighted MRI is an important and widely‐used technique for evaluating the abdomen. Both fat‐saturation and Dixon‐based fat‐suppression methods are used at conventional field strengths; however, both have challenges at lower field strengths (<1.5T) due to insufficient fat suppression and/or inadequate resolution. Specifically, at lower field strengths, fat saturation often fails due to the short T1 of lipid; and Cartesian Dixon imaging provides poor spatial resolution due to the need for a long ∆TE, due to the smaller ∆f between water and lipid. The purpose of this work is to demonstrate a new approach capable of simultaneously achieving excellent fat suppression and high spatial resolution on a 0.55T whole‐body system. MethodsWe applied 3D stack‐of‐spirals Dixon imaging at 0.55T, with compensation of concomitant field phase during reconstruction. The spiral readouts make efficient use of the requisite ∆TE. We compared this with 3D Cartesian Dixon imaging. Experiments were performed in 2 healthy and 10 elevated liver fat volunteers. ResultsStack‐of‐spirals Dixon imaging at 0.55T makes excellent use of the required ∆TE, provided high SNR efficiency and finer spatial resolution (1.7 × 1.7 × 5 mm3) compared Cartesian Dixon (3.5 × 3.5 × 5 mm3), within a 17‐s breath‐hold. We observed successful fat suppression, and improved definition of structures such as the liver, kidneys, and bowel. ConclusionWe demonstrate that high‐resolution single breath‐hold volumetric abdominal T1‐weighted imaging is feasible at 0.55T using spiral sampling and concomitant field correction. This is an attractive alternative to existing Cartesian‐based methods, as it simultaneously provides high‐resolution and excellent fat‐suppression.more » « less
- 
            PurposeTo demonstrate the feasibility of high‐resolution morphologic lung MRI at 0.55 T using a free‐breathing balanced steady‐state free precession half‐radial dual‐echo imaging technique (bSTAR). MethodsSelf‐gated free‐breathing bSTAR (TE1/TE2/TR of 0.13/1.93/2.14 ms) lung imaging in five healthy volunteers and a patient with granulomatous lung disease was performed using a 0.55 T MR‐scanner. A wobbling Archimedean spiral pole (WASP) trajectory was used to ensure a homogenous coverage of k‐space over multiple breathing cycles. WASP uses short‐duration interleaves randomly tilted by a small polar angle and rotated by a golden angle about the polar axis. Data were acquired continuously over 12:50 min. Respiratory‐resolved images were reconstructed off‐line using compressed sensing and retrospective self‐gating. Reconstructions were performed with a nominal resolution of 0.9 mm and a reduced isotropic resolution of 1.75 mm corresponding to shorter simulated scan times of 8:34 and 4:17 min, respectively. Analysis of apparent SNR was performed in all volunteers and reconstruction settings. ResultsThe technique provided artifact‐free morphologic lung images in all subjects. The short TR of bSTAR in conjunction with a field strength of 0.55 T resulted in a complete mitigation of off‐resonance artifacts in the chest. Mean SNR values in healthy lung parenchyma for the 12:50 min scan were 3.6 ± 0.8 and 24.9 ± 6.2 for 0.9 mm and 1.75 mm reconstructions, respectively. ConclusionThis study demonstrates the feasibility of morphologic lung MRI with a submillimeter isotropic spatial resolution in human subjects with bSTAR at 0.55 T.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    