skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Compilation of detrital 10Be erosion rate data, San Gabriel Mountains, CA, USA
This dataset of detrital cosmogenic 10Be erosion rates from stream sands includes new and previously published measurements, compiled as part of DiBiase et al. (2023). Sample location information has been updated from original publications using field notes, pictures, and new lidar topography to align with correct stream network position. All erosion rates have been recalculated using updated in situ 10Be production rate estimates in quartz, as described in DiBiase et al. (2023). In addition to 10Be data, this dataset also includes catchment-scale topographic, climate, and landslide impact metrics, as described in DiBiase et al. (2023).  more » « less
Award ID(s):
1848321
PAR ID:
10511807
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Interdisciplinary Earth Data Alliance (IEDA)
Date Published:
Subject(s) / Keyword(s):
Regional (Continents, Oceans) 10Be, cosmogenic nuclides, CRN, erosion rate, stream sediments
Format(s):
Medium: X Other: xls
Sponsoring Org:
National Science Foundation
More Like this
  1. This dataset contains polygon shapefiles of watersheds draining detrital 10Be erosion rate samples from the San Gabriel Mountains, California (USA), with the naming format “mask_SampleID.shp”. This dataset is a companion to: DiBiase, R. A., Neely, A. B., Whipple, K. X, Heimsath, A. M., and Niemi, N. A. (2023), Hillslope morphology drives variability of detrital 10Be erosion rates in steep landscapes, Geophysical Research Letters, 50, e2023GL104392. https://doi.org/10.1029/2023GL104392 Full information for samples is described in: DiBiase, R. A., Neely, A. B., Whipple, K. X., Heimsath, A. M., Niemi, N. A., 2023. Compilation of detrital 10Be erosion rate data, San Gabriel Mountains, CA, USA, Version 1.0. Interdisciplinary Earth Data Alliance (IEDA). https://doi.org/10.26022/IEDA/112928. Accessed 2023-08-08. 
    more » « less
  2. Temporal and spatial variations of tectonic rock uplift are generally thought to be the main controls on long-term erosion rates in various landscapes. However, rivers continuously lengthen and capture drainages in strike-slip fault systems due to ongoing motion across the fault, which can induce changes in landscape forms, drainage networks, and local erosion rates. Located along the restraining bend of the San Andreas Fault, the San Bernardino Mountains provide a suitable location for assessing the influence of topographic disequilibrium from perturbations by tectonic forcing and channel reorganization on measured erosion rates. In this study, we measured 17 new basin-averaged erosion rates using cosmogenic 10Be in river sands (hereafter, 10Be-derived erosion rates) and compiled 31 10Be-derived erosion rates from previous work. We quantify the degree of topographic disequilibrium using topographic analysis by examining hillslope and channel decoupling, the areal extent of pre-uplift surface, and drainage divide asymmetry across various landscapes. Similar to previous work, we find that erosion rates generally increase from north to south across the San Bernardino Mountains, reflecting a southward increase in tectonic activity. However, a comparison between 10Be-derived erosion rates and various topographic metrics in the southern San Bernardino Mountains suggests that the presence of transient landscape features such as relict topography and drainage-divide migration may explain local variations in 10Be-derived erosion rates. Our work shows that coupled analysis of erosion rates and topographic metrics provides tools for assessing the influence of tectonic uplift and channel reorganization on landscape evolution and 10Be-derived erosion rates in an evolving strike-slip restraining bend. 
    more » « less
  3. Abstract. We use 25 new measurements of in situ produced cosmogenic 26Al and 10Bein river sand, paired with estimates of dissolved load flux in river water,to characterize the processes and pace of landscape change in central Cuba.Long-term erosion rates inferred from 10Be concentrations in quartzextracted from central Cuban river sand range from3.4–189 Mg km−2 yr−1 (mean 59, median 45). Dissolved loads (10–176 Mg km−2 yr−1; mean 92, median 97), calculated from stream soluteconcentrations and modeled runoff, exceed measured cosmogenic-10Be-derived erosion rates in 18 of 23 basins. This disparity mandatesthat in this environment landscape-scale mass loss is not fully representedby the cosmogenic nuclide measurements. The 26Al / 10Be ratios are lower than expected for steady-state exposure or erosion in 16 of 24 samples. Depressed 26Al / 10Be ratios occur in many of the basins that have the greatest disparity between dissolved loads (high) and erosion rates inferred from cosmogenic nuclide concentrations (low). Depressed 26Al / 10Be ratios are consistentwith the presence of a deep, mixed, regolith layer providing extendedstorage times on slopes and/or burial and extended storage during fluvialtransport. River water chemical analyses indicate that many basins with lower 26Al / 10Be ratios and high 10Be concentrations are underlain at least in part by evaporitic rocks that rapidly dissolve. Our data show that when assessing mass loss in humid tropical landscapes,accounting for the contribution of rock dissolution at depth is particularly important. In such warm, wet climates, mineral dissolution can occur many meters below the surface, beyond the penetration depth of most cosmic rays and thus the production of most cosmogenic nuclides. Our data suggest the importance of estimating solute fluxes and measuring paired cosmogenic nuclides to better understand the processes and rates of mass transfer at a basin scale. 
    more » « less
  4. Abstract. Long-term erosion rates in Tasmania, at the southern end of Australia's Great Dividing Range, are poorly known; yet, this knowledge is critical for making informed land-use decisions and improving the ecological health of coastal ecosystems. Here, we present quantitative, geologically relevant estimates of erosion rates for the George River basin, in northeast Tasmania, based on in situ-produced 10Be (10Bei) measured from stream sand at two trunk channel sites and seven tributaries (mean: 24.1±1.4 Mgkm-2yr-1; 1σ). These new10Bei-based erosion rates are strongly related to elevation, which appears to control mean annual precipitation and temperature,suggesting that elevation-dependent surface processes influence rates of erosion in northeast Tasmania. Erosion rates are not correlated with slopein contrast to erosion rates along the mainland portions of Australia's Great Dividing Range. We also extracted and measured meteoric 10Be(10Bem) from grain coatings of sand-sized stream sediment at each site, which we normalize to measured concentrations of reactive 9Beand use to estimate 10Bem-based denudation rates for the George River. 10Bem/9Bereac denudation ratesreplicate 10Bei erosion rates within a factor of 3 but are highly sensitive to the value of 9Be that is found in bedrock(9Beparent), which was unmeasured in this study. 10Bem/9Bereac denudation rates seem sensitive to recentmining, forestry, and agricultural land use, all of which resulted in widespread topsoil disturbance. Our findings suggest that10Bem/9Bereac denudation metrics will be most useful in drainage basins that are geologically homogeneous, where recentdisturbances to topsoil profiles are minimal, and where 9Beparent is well constrained. 
    more » « less
  5. This dataset consists of weekly trajectory information of Gulf Stream Cold Eddies (CE) that existed between 2017 and 2023. The format of this Cold Eddy dataset is similar to the Warm Core Ring (WCR) Trajectory data from Porter et al. (2022, 2024) and Silver et al. (2022), and the following description is adapted from those datasets. This dataset is comprised of individual files containing each eddy’s weekly center location and its surface area for 181 CEs that existed and were tracked between January 1, 2017 and December 31, 2023 (28 CEs formed in 2017; 24 formed in 2018; 25 formed in 2019; 26 formed in 2020; 35 formed in 2021; 23 formed in 2022; and 20 formed in 2023). Each Cold Eddy is identified by a unique alphanumeric code 'CEyyyymmddX', where 'CE' represents a Cold Eddy (as identified in the analysis charts); 'yyyymmdd' is the year, month and day of formation; and the last character 'X' represents the sequential sighting (formation) of the eddy in that particular year. Continuity of an eddy which passes from one year to the next is maintained by the same character in the previous year and absorbed by the initial alphabets for the next year. For example, the first eddy formed in 2021 has a trailing alphabet of 'J', which signifies that a total of nine eddies were carried over from 2020 which were still present on January 1, 2021 and were assigned the initial nine alphabets (A, B, C, D, E, F, G, H, and I). Each eddy trajectory has its own netCDF (.nc) filename following its alphanumeric code. Each file contains 4 variables every week, “Lon”- the eddy center’s longitude, “Lat”- the eddy center’s latitude, “Area” - the eddies size in km^2, and “Date” in days – which is the number of days since Jan 01, 0000. Note that in this dataset, which ended tracking all eddies up to 2023, there were six eddies that formed in 2023, and were carried over into 2024 were included with their full trajectories going into the year 2024. These eddies are: ‘CE20230515P’, ‘CE20230818U’, 'CE20230925V', 'CE20231030Y', 'CE20231103Z', and 'CE20231106a'. Findings from Jensen et al. (2024) suggest three different cyclonic eddy formation types: pinch-off cyclonic rings, hook-type cyclonic eddies, and Sargasso Sea cyclonic eddies. Pinch-off cyclonic rings form from a Gulf Stream meander trough amplifying, then encircling Slope Sea water and eventually detaching from the Gulf Stream as a cyclonic cold-core ring in the Sargasso Sea. Hook-type eddies form from a southward extending filament of the southern flank of the Gulf Stream establishing as a hook-like entity cyclonically encircling a body of Sargasso Sea water at its core. Sargasso Sea cyclonic eddies are isolated from the Gulf Stream and occur in the Sargasso Sea. A separate file is also created to help identify the cold eddy's formation type. Two files are provided here. These are: (1)  The trajectories of all Gulf Stream Cold Eddies formed from 2017 to 2023. Filename – CE_2017_2023_ncfiles.zip (2)  Information on the formation type of each Cold Eddy. Filename – CE_FormationTypes_2017to2023.doc The process of creating the CE weekly tracking dataset follows the same GIS-based methodology of the previously generated WCR census (Gangopadhyay et al., 2019, 2020). The Jenifer Clark’s Gulf Stream Charts described in Gangopadhyay et al. (2019), and continued through 2023 were used to create this dataset and were available 2-3 times a week from 2017-2023. Thus, we used approximately 840+ Charts for the 7 years of analysis. All of these charts were reanalyzed between 75°W and 55°W using QGIS 2.18.16 (2016) and geo-referenced on a WGS84 coordinate system (Decker, 1986). A single eddy trajectory is then obtained following an eddy through all of the available charts during the eddy's lifespan on a weekly basis. This process is repeated for every individual eddy.     
    more » « less