skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Remembrance of things past
A<sc>bstract</sc> Nonlinear sigma models on de Sitter background have proved a useful prototype for quantum gravity in summing the large logarithms which arise from loop corrections. We consider a model whose evolution is described, at leading logarithm order, by the trace of the coincident, doubly differentiated scalar propagator. An analytic approximation for this quantity on an arbitrary expansion history is applied to generalize the resummed de Sitter result to any cosmological background which has experienced primordial inflation. In addition to analytic expressions, we present explicit numerical results for the evolution in a plausible expansion history. The large scales of primordial inflation are transmitted to late times.  more » « less
Award ID(s):
2207514
PAR ID:
10511905
Author(s) / Creator(s):
;
Publisher / Repository:
Journal of High Energy Physics
Date Published:
Journal Name:
Journal of High Energy Physics
Volume:
2023
Issue:
8
ISSN:
1029-8479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A<sc>bstract</sc> Finding string backgrounds with de Sitter spacetime, where all approximations and corrections are controlled, is an open problem. We revisit the search for de Sitter solutions in the classical regime for specific type IIB supergravity compactifications on group manifolds, an under-explored corner of the landscape that offers an interesting testing ground for swampland conjectures. While the supergravity de Sitter solutions we obtain numerically are ambiguous in terms of their classicality, we find an analytic scaling that makes four out of six compactification radii, as well as the overall volume, arbitrarily large. This potentially provides parametric control over corrections. If we could show that these solutions, or others to be found, are fully classical, they would constitute a counterexample to conjectures stating that asymptotic de Sitter solutions do not exist. We discuss this point in great detail. 
    more » « less
  2. In this paper, we systematically study the evolution of the Universe within the framework of a modified loop quantum cosmological model (mLQC-I) using various inflationary potentials, including chaotic, Starobinsky, generalized Starobinsky, polynomials of the first and second kinds, generalized T-models and natural inflation. In all these models, the big bang singularity is replaced by a quantum bounce, and the evolution of the Universe, both before and after the bounce, is universal and weakly dependent on the inflationary potentials, as long as the evolution is dominated by the kinetic energy of the inflaton at the bounce. In particular, the pre-bounce evolution can be universally divided into three different phases: pre-bouncing, pre-transition, and pre-de Sitter. The pre-bouncing phase occurs immediately before the quantum bounce, during which the evolution of the Universe is dominated by the kinetic energy of the inflaton. Thus, the equation of state of the inflaton is about one, w(ϕ)≃1. Soon, the inflation potential takes over, so w(ϕ) rapidly falls from one to negative one. This pre-transition phase is very short and quickly turns into the pre-de Sitter phase, whereby the effective cosmological constant of Planck size takes over and dominates the rest of the contracting phase. Throughout the entire pre-bounce regime, the evolution of both the expansion factor and the inflaton can be approximated by universal analytical solutions, independent of the specific inflation potentials. 
    more » « less
  3. The precision cosmological model describing the origin and expansion history of the universe, with observed structure seeded at the inflationary cosmic horizon, demands completion in the ultraviolet and in the infrared. The dynamics of the cosmic horizon also suggests an associated entropy, again requiring a microphysical theory. Recent years have seen enormous progress in understanding the structure of de Sitter space and inflation in string theory, and of cosmological observables captured by quantum field theory and solvable deformations thereof. The resulting models admit ongoing observational tests through measurements of the cosmic microwave background and large-scale structure, as well as through analyses of theoretical consistency by means of thought experiments. This paper, prepared for the TF01 and TF09 conveners of the Snowmass 2021 process, provides a synopsis of this important area, focusing on ongoing developments and opportunities. Note: Contribution to Snowmass 2021 
    more » « less
  4. A<sc>bstract</sc> We study two-point functions of symmetric traceless local operators in the bulk of de Sitter spacetime. We derive the Källén-Lehmann spectral decomposition for any spin and show that unitarity implies its spectral densities are nonnegative. In addition, we recover the Källén-Lehmann decomposition in Minkowski space by taking the flat space limit. Using harmonic analysis and the Wick rotation to Euclidean Anti de Sitter, we derive an inversion formula to compute the spectral densities. Using the inversion formula, we relate the analytic structure of the spectral densities to the late-time boundary operator content. We apply our technical tools to study two-point functions of composite operators in free and weakly coupled theories. In the weakly coupled case, we show how the Källén-Lehmann decomposition is useful to find the anomalous dimensions of the late-time boundary operators. We also derive the Källén-Lehmann representation of two-point functions of spinning primary operators of a Conformal Field Theory on de Sitter. 
    more » « less
  5. The detection of a primordial stochastic gravitational wave background has the potential to reveal unprecedented insights into the early universe, and possibly into the dynamics of inflation. Generically, UV-complete inflationary models predict an abundance of light scalars, so any inflationary stochastic background may well be formed in a model with several interacting degrees of freedom. The stochastic backgrounds possible from two-field inflation have been well-studied in the literature, but it is unclear how similar they are to the possibilities from many-field inflation. In this work we study stochastic backgrounds from more-than-two field inflation for the first time, focusing on the scalar-induced background produced during the radiation era by a brief turn in three-field space. We find an analytic expression for the enhancement in the power spectrum as a function of the turn rate and the torsion, and show that unique signatures of three-field dynamics are possible in the primordial power spectrum and gravitational wave spectrum. We confirm our analytic results with a suite of numerical simulations and find good agreement in the shape and amplitude of the power spectra. We also comment on the detection prospects in LISA and other future detectors. We do not expect the moderately large growth of the inflationary perturbations necessary for detection to cause a breakdown of perturbation theory, but this must be verified on a case-by-case basis for specific microphysical models to make a definitive claim. 
    more » « less