A bstract Classical flux compactifications contribute to a well-controlled corner of the string landscape, therefore providing an important testing ground for a variety of conjectures. We focus here on type II supergravity compactifications on 6d group manifolds towards 4d maximally symmetric spacetimes. We develop a code where the truncation to left-invariant scalars and the dimensional reduction to a 4d theory are automated, for any possible configuration of O p -planes and D p -branes. We then prove that any such truncation is consistent. We further compute the mass spectrum and analyse the stability of many de Sitter, Minkowski or anti-de Sitter solutions, as well as their consistency with swampland conjectures. 
                        more » 
                        « less   
                    
                            
                            On classical de Sitter solutions and parametric control
                        
                    
    
            A<sc>bstract</sc> Finding string backgrounds with de Sitter spacetime, where all approximations and corrections are controlled, is an open problem. We revisit the search for de Sitter solutions in the classical regime for specific type IIB supergravity compactifications on group manifolds, an under-explored corner of the landscape that offers an interesting testing ground for swampland conjectures. While the supergravity de Sitter solutions we obtain numerically are ambiguous in terms of their classicality, we find an analytic scaling that makes four out of six compactification radii, as well as the overall volume, arbitrarily large. This potentially provides parametric control over corrections. If we could show that these solutions, or others to be found, are fully classical, they would constitute a counterexample to conjectures stating that asymptotic de Sitter solutions do not exist. We discuss this point in great detail. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10590339
- Publisher / Repository:
- Journal of High Energy Physics
- Date Published:
- Journal Name:
- Journal of High Energy Physics
- Volume:
- 2024
- Issue:
- 6
- ISSN:
- 1029-8479
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            A<sc>bstract</sc> We show that the general charged, rotating black hole in five-dimensional Einstein-Maxwell theory has a singular extremal limit. Only the known analytic solutions with exactly zero charge or zero angular momenta have smooth extremal horizons. We also consider general black holes in five-dimensional Einstein-Maxwell-Chern-Simons theory, and show that they also have singular extremal limits except for one special value of the coefficient of the Chern-Simons term (the one fixed by supergravity). Combining this with earlier results showing that extremal black holes have singular horizons in four-dimensional general relativity with small higher derivative corrections, and in anti-de Sitter space with perturbed boundary conditions, one sees that smooth extremal horizons are indeed the exception and not the rule.more » « less
- 
            A<sc>bstract</sc> Nonlinear sigma models on de Sitter background have proved a useful prototype for quantum gravity in summing the large logarithms which arise from loop corrections. We consider a model whose evolution is described, at leading logarithm order, by the trace of the coincident, doubly differentiated scalar propagator. An analytic approximation for this quantity on an arbitrary expansion history is applied to generalize the resummed de Sitter result to any cosmological background which has experienced primordial inflation. In addition to analytic expressions, we present explicit numerical results for the evolution in a plausible expansion history. The large scales of primordial inflation are transmitted to late times.more » « less
- 
            A<sc>bstract</sc> We introduce and study a candidate gravity dual to the double scaled SYK model in the form of an exactly soluble 2D de Sitter gravity model consisting of two spacelike Liouville CFTs with complex central charge adding up toc++c−= 26. In [1] it was shown that the two-point function of physical operators in a doubled SYK model matches in the semi-classical limit with the Green’s function of a massive scalar field in 3D de Sitter space. As further evidence of the duality, we adapt a result from Zamolodchikov to compute the boundary two-point function of the 2D Liouville-de Sitter gravity model on a disk and find that it reproduces the exact DSSYK two-point function to all orders inλ=p2/N. We describe how the 2D Liouville-de Sitter gravity model arises from quantizing 3D de Sitter gravity.more » « less
- 
            Abstract We discuss some basic aspects of effective field theory applied to supergravity theories which arise in the low‐energy limit of string theory. Our discussion is particularly relevant to the effective field theories of no‐scale supergravities that break supersymmetry, including those that appear in constructing de Sitter solutions of string theory.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    