skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Organometallic Chirality Sensing via “Click”‐Like η6‐Arene Coordination with an Achiral Cp*Ru(II) Piano Stool Complex
Piano stool complexes have been studied over many years and found widespread applications in organic synthesis, catalysis, materials and drug development. We now report the first examples of quantitative chiroptical molecular recognition of chiral compounds through click‐like η6-arene coordination with readily available half sandwich complexes. This conceptually new approach to chirality sensing is based on irreversible acetonitrile displacement of [Cp*Ru(CH3CN)3]PF6 by an aromatic target molecule, a process that is fast and complete within a few minutes at room temperature. The metal coordination coincides with characteristic circular dichroism inductions that can be easily correlated to the absolute configuration and enantiomeric ratio of the bound molecule. A relay assay that decouples the determination of the enantiomeric composition and of the total sample amount by a practical CD/UV measurement protocol was developed and successfully tested. The introduction of piano stool complexes to the chiroptical sensing realm is mechanistically unique and extends the scope of currently known methods with small‐molecule probes that require the presence of amino, alcohol, carboxylate or other privileged functional groups for binding of the target compound. A broad application range including pharmaceutically relevant multifunctional molecules and the use in chromatography‐free asymmetric reaction analysis are also demonstrated.  more » « less
Award ID(s):
2246747
PAR ID:
10511917
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
63
ISSN:
1433-7851
Page Range / eLocation ID:
e202404594
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The efficiency and scope of two acyclic π-wall extended cucurbiturils, M2 and M3 , exhibiting rapidly interconverting helical conformers for chiroptical sensing of amines, amino acids, alcohols, and terpenes at micromolar concentrations in water is evaluated. The formation of 1 : 1 host–guest complexes results in spontaneous induction of circular dichroism signals that can be used for accurate determination of the absolute configuration and enantiomeric composition of the analyte based on a simple mix-and-measure protocol. 
    more » « less
  2. null (Ed.)
    The efficiency and scope of two acyclic π-wall extended cucurbiturils, M2 and M3 , exhibiting rapidly interconverting helical conformers for chiroptical sensing of amines, amino acids, alcohols, and terpenes at micromolar concentrations in water is evaluated. The formation of 1 : 1 host–guest complexes results in spontaneous induction of circular dichroism signals that can be used for accurate determination of the absolute configuration and enantiomeric composition of the analyte based on a simple mix-and-measure protocol. 
    more » « less
  3. The analysis of the absolute configuration, enantiomeric composition, and concentration of chiral compounds are frequently encountered tasks across the chemical and health sciences. Chiroptical sensing methods can streamline this work and allow high-throughput screening with remarkable reduction of operational time and cost. During the last few years, significant methodological advances with innovative chirality sensing systems, the use of computer-generated calibration curves, machine learning assistance, and chemometric data processing, to name a few, have emerged and are now matched with commercially available multi-well plate CD readers. These developments have reframed the chirality sensing space and provide new opportunities that are of interest to a large group of chemists. This review will discuss chirality sensing strategies and applications with representative small-molecule CD sensors. Emphasis will be given to important milestones and recent advances that accelerate chiral compound analysis by outperforming traditional methods, conquer new directions, and pioneering efforts that lie at the forefront of chiroptical high-throughput screening developments. The goal is to provide the reader with a thorough understanding of the current state and a perspective of future directions of this rapidly emerging field. 
    more » « less
  4. The reaction between a chiral carboxylic acid molecule and 1,1′-bis(diphenylphosphino)ferrocenepalladium dichloride in the presence of a mild base generates a chiroptically active metal complex displaying strong CD signals in the visible light region, a highly sought-after goal in the optical sensing realm. The molecular recognition process is complete within a few minutes and can be used for fast chiroptical determination of the enantiomeric composition and concentration of carboxylic acid samples. This method is operationally simple and broadly applicable to a large variety of structures including important drugs, natural products, amino acids and hydroxy acids. All components needed are commercially available and this optical sensing assay can be readily adapted by any laboratory interested in chirality analysis and high-throughput experimentation. 
    more » « less
  5. Chiroptical sensing of nitriles is achieved with excellent functional group tolerance by hydrozirconation and subsequent transmetalation of the corresponding iminate to a chromophoric palladium complex. A one-pot workflow that uses the Schwartz’ reagent and [(η3-1-tert-butylindenyl)(μ-Cl)Pd]2 as sensor generates a palladium complex displaying red-shifted CD inductions and characteristic UV changes. These chiroptical responses are accurately correlated to the enantiomeric ratio and total concentration, respectively, of the original nitrile. 
    more » « less