Drought‐induced xylem embolism is a primary cause of plant mortality. Although We quantified the vulnerability to drought‐induced embolism, pressure–volume curves, Compared with other major vascular plant clades, cycads exhibited similar embolism resistance to angiosperms and pteridophytes but were more vulnerable to embolism than noncycad gymnosperms. All 20 cycads had both tracheids and vessels, the proportions of which were unrelated to embolism resistance. Only vessel pit membrane fraction was positively correlated to embolism resistance, contrary to angiosperms. Water potential at turgor loss was significantly correlated to embolism resistance among cycads. Our results show that cycads exhibit low resistance to xylem embolism and that xylem anatomical traits – particularly vessels – may influence embolism resistance together with tracheids. This study highlights the importance of understanding the mechanisms of drought resistance in evolutionarily unique and threatened lineages like the cycads.
This content will become publicly available on July 1, 2025
- Award ID(s):
- 2243971
- PAR ID:
- 10511969
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- New phytologist
- ISSN:
- 1469-8137
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Summary c . 70% of cycads are threatened by extinction and extant cycads diversified during a period of increasing aridification, the vulnerability of cycads to embolism spread has been overlooked.in situ water potentials, and a suite of xylem anatomical traits of leaf pinnae and rachises for 20 cycad species. We tested whether anatomical traits were linked to hydraulic safety in cycads. -
Abstract Interconduit pit membranes, which are permeable regions in the primary cell wall that connect to adjacent conduits, play a crucial role in water relations and the movement of nutrients between xylem conduits. However, how pit membrane characteristics might influence water‐carbon coupling remains poorly investigated in cycads. We examined pit characteristics, the anatomical and photosynthetic traits of 13 cycads from a common garden, to determine if pit traits and their coordination are related to water relations and carbon economy. We found that the pit traits of cycads were highly variable and that cycads exhibited a similar tradeoff between pit density and pit area as other plant lineages. Unlike other plant lineages (1) pit membranes, pit apertures, and pit shapes of cycads were not coordinated as in angiosperms; (2) cycads exhibited larger pit membrane areas but lower pit densities relative to ferns and angiosperms, but smaller and similar pit membrane densities to non‐cycad gymnosperms; (3) cycad pit membrane areas and densities were partially coordinated with anatomical traits, with hydraulic supply of the rachis positively coordinated with photosynthesis, whereas pit aperture areas and fractions were negatively coordinated with photosynthetic traits; (4) cycad pit traits reflected adaptation to wetter habitats for Cycadaceae and drier habitats for Zamiaceae. The large variation in pit traits, the unique pit membrane size and density, and the partial coordination of pit traits with anatomical and physiological traits of the rachis and pinna among cycads may have facilitated their dominance in a variety of ecosystems from the Mesozoic to modern times.
-
Martinez-Vilalta, Jordi (Ed.)
Abstract The resistance of xylem conduits to embolism is a major factor defining drought tolerance and can set the distributional limits of species across rainfall gradients. Recent work suggests that the proximity of vessels to neighbors increases the vulnerability of a conduit. We therefore investigated whether the relative vessel area of xylem correlates with intra- and inter-generic variation in xylem embolism resistance in species pairs or triplets from the genera Acer, Cinnamomum, Ilex, Quercus and Persea, adapted to environments differing in aridity. We used the optical vulnerability method to assess embolism resistance in stems and conducted anatomical measurements on the xylem in which embolism resistance was quantified. Vessel lumen fraction (VLF) correlated with xylem embolism resistance across and within genera. A low VLF likely increases the resistance to gas movement between conduits, by diffusion or advection, whereas a high VLF enhances gas transport thorough increased conduit-to-conduit connectivity and reduced distances between conduits and therefore the likelihood of embolism propagation. We suggest that the rate of gas movement due to local pressure differences and xylem network connectivity is a central driver of embolism propagation in angiosperm vessels.
-
Abstract Recent findings suggest that tree mortality and post‐drought recovery of gas exchange can be predicted from loss of function within the water transport system. Understanding the susceptibility of plants to hydraulic damage requires knowledge about the vulnerability of different plant organs to stress‐induced hydraulic dysfunction. This is particularly important in the context of vulnerability segmentation between plant tissues which is believed to protect more energetically ‘costly’ tissues, such as woody stems, by sacrificing ‘cheaper’ leaves early under drought conditions.
Differences in vulnerability segmentation between co‐occurring plant species could explain divergent behaviours during drought, yet there are few studies considering how this characteristic may vary within a plant community. Here we investigated community‐wide vulnerability segmentation by comparing leaf/shoot and stem vulnerability in all coexistent dominant canopy and understory woody species in a diverse dry sclerophyll woodland community, including multiple angiosperms and one gymnosperm.
Previously published terminal leaf/shoot vulnerability to loss of water transport capacity was compared with stem xylem vulnerability to embolism measured on the same species at the same site. We calculated hydraulic safety margins for stems to determine variation in the risk of hydraulic failure during drought among species.
The xylem of all species was found to be highly resistant to hydraulic dysfunction, with only two of the eight species exhibiting significantly different vulnerability to the overall mean. No evidence of vulnerability segmentation between shoots/leaves and stems was found in seven of the eight species.
Phylogenetically diverse canopy and understory species in this evergreen sclerophyll woodland appear to have evolved similar strategies of drought resistance, including low xylem vulnerability to embolism and general lack of vulnerability segmentation. This convergence in hydraulic safety indicates a lack of hydraulic niche partitioning in this woodland community.
A free
plain language summary can be found within the Supporting Information of this article. -
Abstract Drought events may increase the likelihood that the plant water transport system becomes interrupted by embolism. Yet our knowledge about the temporal frequency of xylem embolism in the field is frequently lacking, as it requires detailed, long‐term measurements.
We measured xylem embolism resistance and midday xylem water potentials during the consecutive summers of 2019 and 2020 to estimate maximum levels of embolism in leaf and stem xylem of ten temperate angiosperm tree species. We also studied vessel and pit membrane characteristics based on light and electron microscopy to corroborate potential differences in embolism resistance between leaves and stems.
Apart from
A .pseudoplatanus andQ .petraea , eight species experienced minimum xylem water potentials that were close to or below those required to initiate embolism. Water potentials corresponding to ca. 12% loss of hydraulic conductivity (PLC) could occur in six species, while considerable levels of embolism around 50% PLC were limited toB .pendula andC .avellana . There was a general agreement in embolism resistance between stems and leaves, with leaves being equally or more resistant than stems. Also, xylem embolism resistance was significantly correlated to intervessel pit membrane thickness (T PM) for stems, but not to vessel diameter and total intervessel pit membrane surface area of a vessel.Our data indicate that low amounts of embolism occur in most species during moderate summer drought, and that considerable levels of embolism are uncommon. Moreover, our experimental and
T PMdata show that leaf xylem is generally no more vulnerable than stem xylem.