Dilated cardiomyopathy (DCM) is the third most common cause of heart failure and the primary reason for heart transplantation; upward of 70% of DCM cases are considered idiopathic. Our in-vitro experiments showed that reduced hybrid/complex N-glycosylation in mouse cardiomyocytes is linked with DCM. Further, we observed direct effects of reduced N-glycosylation on K v gating. However, it is difficult to rigorously determine the effects of glycosylation on K v activity, because there are multiple K v isoforms in cardiomyocytes contributing to the cardiac excitation. Due to complex functions of K v isoforms, only the sum of K + currents (I Ksum ) can be recorded experimentally and decomposed later using exponential fitting to estimate component currents, such as I Kto , I Kslow , and I Kss . However, such estimation cannot adequately describe glycosylation effects and K v mechanisms. Here, we propose a framework of simulation modeling of K v kinetics in mouse ventricular myocytes and model calibration using the in-vitro data under normal and reduced glycosylation conditions through ablation of the Mgat1 gene (i.e., Mgat1KO). Calibrated models facilitate the prediction of K v characteristics at different voltages that are not directly observed in the in-vitro experiments. A model calibration procedure is developed based on the genetic algorithm. Experimental results show that, in the Mgat1KO group, both I Kto and I Kslow densities are shown to be significantly reduced and the rate of I Kslow inactivation is much slower. The proposed approach has strong potential to couple simulation models with experimental data for gaining a better understanding of glycosylation effects on K v kinetics.
more »
« less
Model-guided concurrent data assimilation for calibrating cardiac ion-channel kinetics
Potassium channels (Kv) are responsible for repolarizing the action potential in cardiomyocytes. There is a variety of Kv isoforms and corresponding currents (e.g. IKto, IKslow1, IKslow2) that contribute to different phases of repolarization. Because only the sum of their activities can be measured in the form of currents (IKsum), there is a need to delineate individual K+ currents. Most existing studies make inference of Kv activities via curve-fitting procedures but encounter certain limitations as follows: (1) curve-fitting decomposition only relies on the shape of K+ current traces, which does not discern the underlying kinetics; (2) IKsum traces can only be fitted for one clamp voltage at each time, and then analyzed in a population-averaged way later. This paper presents a novel concurrent data assimilation method to calibrate biophysics-based models and delineate kinetics of Kv isoforms with multiple voltage-clamp responses simultaneously. The proposed method is evaluated and validated with whole-cell IKsum recordings from wild-type and chronically glycosylation-deficient cardiomyocytes. Experimental results show that the proposed method effectively handles multiple-response data and describes glycosylation-conferred perturbations to Kv isoforms. Further, we develop a graphical-user-interface (GUI) application that provides an enabling tool to biomedical scientists for data-driven modeling and analysis of Kv kinetics in various heart diseases.
more »
« less
- PAR ID:
- 10511972
- Publisher / Repository:
- Taylor & Francis
- Date Published:
- Journal Name:
- IISE Transactions on Healthcare Systems Engineering
- Volume:
- 14
- Issue:
- 2
- ISSN:
- 2472-5579
- Page Range / eLocation ID:
- 153-166
- Subject(s) / Keyword(s):
- Data assimilation simulation modeling model calibration cardiac potassium channels congenital disorders of glycosylation in-silico modeling cardiac modeling ion channels
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Tight regulation of the Na/K pump is essential for cellular function because this heteromeric protein builds and maintains the electrochemical gradients for Na+ and K+ that energize electrical signaling and secondary active transport. We studied the regulation of the ubiquitous human α1β1 pump isoform by five human FXYD proteins normally located in muscle, kidney, and neurons. The function of Na/K pump α1β1 expressed in Xenopus oocytes with or without FXYD isoforms was evaluated using two-electrode voltage clamp and patch clamp. Through evaluation of the partial reactions in the absence of K+ but presence of Na+ in the external milieu, we demonstrate that each FXYD subunit alters the equilibrium between E1P(3Na) and E2P, the phosphorylated conformations with Na+ occluded and free from Na+, respectively, thereby altering the apparent affinity for Na+. This modification of Na+ interaction shapes the small effects of FXYD proteins on the apparent affinity for external K+ at physiological Na+. FXYD6 distinctively accelerated both the Na+-deocclusion and the pump-turnover rates. All FXYD isoforms altered the apparent affinity for intracellular Na+ in patches, an effect that was observed only in the presence of intracellular K+. Therefore, FXYD proteins alter the selectivity of the pump for intracellular ions, an effect that could be due to the altered equilibrium between E1 and E2, the two major pump conformations, and/or to small changes in ion affinities that are exacerbated when both ions are present. Lastly, we observed a drastic reduction of Na/K pump surface expression when it was coexpressed with FXYD1 or FXYD6, with the former being relieved by injection of PKA's catalytic subunit into the oocyte. Our results indicate that a prominent effect of FXYD1 and FXYD6, and plausibly other FXYDs, is the regulation of Na/K pump trafficking.more » « less
-
Abstract Motivation Isoforms are mRNAs produced from the same gene locus by alternative splicing and may have different functions. Although gene functions have been studied extensively, little is known about the specific functions of isoforms. Recently, some computational approaches based on multiple instance learning have been proposed to predict isoform functions from annotated gene functions and expression data, but their performance is far from being desirable primarily due to the lack of labeled training data. To improve the performance on this problem, we propose a novel deep learning method, DeepIsoFun, that combines multiple instance learning with domain adaptation. The latter technique helps to transfer the knowledge of gene functions to the prediction of isoform functions and provides additional labeled training data. Our model is trained on a deep neural network architecture so that it can adapt to different expression distributions associated with different gene ontology terms. Results We evaluated the performance of DeepIsoFun on three expression datasets of human and mouse collected from SRA studies at different times. On each dataset, DeepIsoFun performed significantly better than the existing methods. In terms of area under the receiver operating characteristics curve, our method acquired at least 26% improvement and in terms of area under the precision-recall curve, it acquired at least 10% improvement over the state-of-the-art methods. In addition, we also study the divergence of the functions predicted by our method for isoforms from the same gene and the overall correlation between expression similarity and the similarity of predicted functions. Availability and implementation https://github.com/dls03/DeepIsoFun/ Supplementary information Supplementary data are available at Bioinformatics online.more » « less
-
This paper presents the design of a compact 45 V-to-54 kV dc-dc converter for high-energy beam applications with the focus on X-ray generation. We describe key design choices for a high power density including a modular structure, high-frequency switching, planar transformers and Dickson topology. High-voltage insulation and thermal management are also described in detail. The experimental data with a 5 kV single module and a 10-module 54 kV converter indicate that the proposed structure can generate high dc voltage while achieving a several times higher power density compared to commercial high-voltage power supplies.more » « less
-
Abstract Excitable cells can be stimulated or inhibited by optogenetics. Since optogenetic actuation regimes are often static, neurons and circuits can quickly adapt, allowing perturbation, but not true control. Hence, we established an optogenetic voltage-clamp (OVC). The voltage-indicator QuasAr2 provides information for fast, closed-loop optical feedback to the bidirectional optogenetic actuator BiPOLES. Voltage-dependent fluorescence is held within tight margins, thus clamping the cell to distinct potentials. We established the OVC in muscles and neurons of Caenorhabditis elegans , and transferred it to rat hippocampal neurons in slice culture. Fluorescence signals were calibrated to electrically measured potentials, and wavelengths to currents, enabling to determine optical I/V-relationships. The OVC reports on homeostatically altered cellular physiology in mutants and on Ca 2+ -channel properties, and can dynamically clamp spiking in C. elegans . Combining non-invasive imaging with control capabilities of electrophysiology, the OVC facilitates high-throughput, contact-less electrophysiology in individual cells and paves the way for true optogenetic control in behaving animals.more » « less
An official website of the United States government

