skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Partial hyperbolicity and pseudo-Anosov dynamics
We study partial hyperbolic (PH) diffeomorphisms in 3-manifolds satisfying a commuting property. This is mainly applicable when the manifold is either hyperbolic or Seifert. As a consequence we prove that if a hyperbolic 3-manifold admits a partially hyperbolic diffeomorphism, then it also admits an Anosov flow.  more » « less
Award ID(s):
2054909
PAR ID:
10511999
Author(s) / Creator(s):
;
Publisher / Repository:
Springer
Date Published:
Journal Name:
Geometric and functional analysis
Volume:
34
Issue:
2
ISSN:
1016-443X
Page Range / eLocation ID:
409-485
Subject(s) / Keyword(s):
Partial hyperbolicity, 3-manifold topology, foliations, classification
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper, we use the [Formula: see text]-spin theorem to show that the Davis hyperbolic 4-manifold admits harmonic spinors. This is the first example of a closed hyperbolic [Formula: see text]-manifold that admits harmonic spinors. We also explicitly describe the spinor bundle of a spin hyperbolic 2- or 4-manifold and show how to calculated the subtle sign terms in the [Formula: see text]-spin theorem for an isometry, with isolated fixed points, of a closed spin hyperbolic 2- or 4-manifold. 
    more » « less
  2. We consider two manifestations of non-positive curvature: acylindrical actions (on hyperbolic spaces) and quasigeodesic stability. We study these properties for the class of hierarchically hyperbolic groups, which is a general framework for simultaneously studying many important families of groups, including mapping class groups, right-angled Coxeter groups, most 3–manifold groups, right-angled Artin groups, and many others. A group that admits an acylindrical action on a hyperbolic space may admit many such actions on different hyperbolic spaces. It is natural to try to develop an understanding of all such actions and to search for a “best” one. The set of all cobounded acylindrical actions on hyperbolic spaces admits a natural poset structure, and in this paper we prove that all hierarchically hyperbolic groups admit a unique action which is the largest in this poset. The action we construct is also universal in the sense that every element which acts loxodromically in some acylindrical action on a hyperbolic space does so in this one. Special cases of this result are themselves new and interesting. For instance, this is the first proof that right-angled Coxeter groups admit universal acylindrical actions. The notion of quasigeodesic stability of subgroups provides a natural analogue of quasi- convexity which can be considered outside the context of hyperbolic groups. In this paper, we provide a complete classification of stable subgroups of hierarchically hyperbolic groups, generalizing and extending results that are known in the context of mapping class groups and right-angled Artin groups. Along the way, we provide a characterization of contracting quasigeodesics; interestingly, in this generality the proof is much simpler than in the special cases where it was already known. 
    more » « less
  3. We consider two manifestations of non-positive curvature: acylindrical actions (on hyperbolic spaces) and quasigeodesic stability. We study these properties for the class of hierarchically hyperbolic groups, which is a general framework for simultaneously studying many important families of groups, including mapping class groups, right-angled Coxeter groups, most 3 3 –manifold groups, right-angled Artin groups, and many others. A group that admits an acylindrical action on a hyperbolic space may admit many such actions on different hyperbolic spaces. It is natural to try to develop an understanding of all such actions and to search for a “best” one. The set of all cobounded acylindrical actions on hyperbolic spaces admits a natural poset structure, and in this paper we prove that all hierarchically hyperbolic groups admit a unique action which is the largest in this poset. The action we construct is also universal in the sense that every element which acts loxodromically in some acylindrical action on a hyperbolic space does so in this one. Special cases of this result are themselves new and interesting. For instance, this is the first proof that right-angled Coxeter groups admit universal acylindrical actions. The notion of quasigeodesic stability of subgroups provides a natural analogue of quasiconvexity which can be considered outside the context of hyperbolic groups. In this paper, we provide a complete classification of stable subgroups of hierarchically hyperbolic groups, generalizing and extending results that are known in the context of mapping class groups and right-angled Artin groups. Along the way, we provide a characterization of contracting quasigeodesics; interestingly, in this generality the proof is much simpler than in the special cases where it was already known. In the appendix, it is verified that any space satisfying the a priori weaker property of being an “almost hierarchically hyperbolic space” is actually a hierarchically hyperbolic space. The results of the appendix are used to streamline the proofs in the main text. 
    more » « less
  4. We give several criteria on a closed, oriented 3-manifold that will imply that it is the boundary of a (simply connected) 4-manifold that admits infinitely many distinct smooth structures. We also show that any weakly fillable contact 3-manifold, or contact 3-manifold with non-vanishing Heegaard Floer invariant, is the boundary of a simply connected 4-manifold that admits infinitely many distinct smooth structures each of which supports a symplectic structure with concave boundary, that is there are infinitely many exotic caps for any such contact manifold. 
    more » « less
  5. Abstract Let M be a geometrically finite acylindrical hyperbolic $$3$$ -manifold and let $M^*$ denote the interior of the convex core of M . We show that any geodesic plane in $M^*$ is either closed or dense, and that there are only countably many closed geodesic planes in $M^*$ . These results were obtained by McMullen, Mohammadi and Oh [Geodesic planes in hyperbolic 3-manifolds. Invent. Math. 209 (2017), 425–461; Geodesic planes in the convex core of an acylindrical 3-manifold. Duke Math. J. , to appear, Preprint , 2018, arXiv:1802.03853] when M is convex cocompact. As a corollary, we obtain that when M covers an arithmetic hyperbolic $$3$$ -manifold $$M_0$$ , the topological behavior of a geodesic plane in $M^*$ is governed by that of the corresponding plane in $$M_0$$ . We construct a counterexample of this phenomenon when $$M_0$$ is non-arithmetic. 
    more » « less