In this paper, we use the [Formula: see text]-spin theorem to show that the Davis hyperbolic 4-manifold admits harmonic spinors. This is the first example of a closed hyperbolic [Formula: see text]-manifold that admits harmonic spinors. We also explicitly describe the spinor bundle of a spin hyperbolic 2- or 4-manifold and show how to calculated the subtle sign terms in the [Formula: see text]-spin theorem for an isometry, with isolated fixed points, of a closed spin hyperbolic 2- or 4-manifold.
more »
« less
Partial hyperbolicity and pseudo-Anosov dynamics
We study partial hyperbolic (PH) diffeomorphisms in 3-manifolds satisfying a commuting property. This is mainly applicable when the manifold is either hyperbolic or Seifert. As a consequence we prove that if a hyperbolic 3-manifold admits a partially hyperbolic diffeomorphism, then it also admits an Anosov flow.
more »
« less
- Award ID(s):
- 2054909
- PAR ID:
- 10511999
- Publisher / Repository:
- Springer
- Date Published:
- Journal Name:
- Geometric and functional analysis
- Volume:
- 34
- Issue:
- 2
- ISSN:
- 1016-443X
- Page Range / eLocation ID:
- 409-485
- Subject(s) / Keyword(s):
- Partial hyperbolicity, 3-manifold topology, foliations, classification
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We consider two manifestations of non-positive curvature: acylindrical actions (on hyperbolic spaces) and quasigeodesic stability. We study these properties for the class of hierarchically hyperbolic groups, which is a general framework for simultaneously studying many important families of groups, including mapping class groups, right-angled Coxeter groups, most 3–manifold groups, right-angled Artin groups, and many others. A group that admits an acylindrical action on a hyperbolic space may admit many such actions on different hyperbolic spaces. It is natural to try to develop an understanding of all such actions and to search for a “best” one. The set of all cobounded acylindrical actions on hyperbolic spaces admits a natural poset structure, and in this paper we prove that all hierarchically hyperbolic groups admit a unique action which is the largest in this poset. The action we construct is also universal in the sense that every element which acts loxodromically in some acylindrical action on a hyperbolic space does so in this one. Special cases of this result are themselves new and interesting. For instance, this is the first proof that right-angled Coxeter groups admit universal acylindrical actions. The notion of quasigeodesic stability of subgroups provides a natural analogue of quasi- convexity which can be considered outside the context of hyperbolic groups. In this paper, we provide a complete classification of stable subgroups of hierarchically hyperbolic groups, generalizing and extending results that are known in the context of mapping class groups and right-angled Artin groups. Along the way, we provide a characterization of contracting quasigeodesics; interestingly, in this generality the proof is much simpler than in the special cases where it was already known.more » « less
-
We consider two manifestations of non-positive curvature: acylindrical actions (on hyperbolic spaces) and quasigeodesic stability. We study these properties for the class of hierarchically hyperbolic groups, which is a general framework for simultaneously studying many important families of groups, including mapping class groups, right-angled Coxeter groups, most 3 3 –manifold groups, right-angled Artin groups, and many others. A group that admits an acylindrical action on a hyperbolic space may admit many such actions on different hyperbolic spaces. It is natural to try to develop an understanding of all such actions and to search for a “best” one. The set of all cobounded acylindrical actions on hyperbolic spaces admits a natural poset structure, and in this paper we prove that all hierarchically hyperbolic groups admit a unique action which is the largest in this poset. The action we construct is also universal in the sense that every element which acts loxodromically in some acylindrical action on a hyperbolic space does so in this one. Special cases of this result are themselves new and interesting. For instance, this is the first proof that right-angled Coxeter groups admit universal acylindrical actions. The notion of quasigeodesic stability of subgroups provides a natural analogue of quasiconvexity which can be considered outside the context of hyperbolic groups. In this paper, we provide a complete classification of stable subgroups of hierarchically hyperbolic groups, generalizing and extending results that are known in the context of mapping class groups and right-angled Artin groups. Along the way, we provide a characterization of contracting quasigeodesics; interestingly, in this generality the proof is much simpler than in the special cases where it was already known. In the appendix, it is verified that any space satisfying the a priori weaker property of being an “almost hierarchically hyperbolic space” is actually a hierarchically hyperbolic space. The results of the appendix are used to streamline the proofs in the main text.more » « less
-
We give several criteria on a closed, oriented 3-manifold that will imply that it is the boundary of a (simply connected) 4-manifold that admits infinitely many distinct smooth structures. We also show that any weakly fillable contact 3-manifold, or contact 3-manifold with non-vanishing Heegaard Floer invariant, is the boundary of a simply connected 4-manifold that admits infinitely many distinct smooth structures each of which supports a symplectic structure with concave boundary, that is there are infinitely many exotic caps for any such contact manifold.more » « less
-
Abstract Let M be a geometrically finite acylindrical hyperbolic $$3$$ -manifold and let $M^*$ denote the interior of the convex core of M . We show that any geodesic plane in $M^*$ is either closed or dense, and that there are only countably many closed geodesic planes in $M^*$ . These results were obtained by McMullen, Mohammadi and Oh [Geodesic planes in hyperbolic 3-manifolds. Invent. Math. 209 (2017), 425–461; Geodesic planes in the convex core of an acylindrical 3-manifold. Duke Math. J. , to appear, Preprint , 2018, arXiv:1802.03853] when M is convex cocompact. As a corollary, we obtain that when M covers an arithmetic hyperbolic $$3$$ -manifold $$M_0$$ , the topological behavior of a geodesic plane in $M^*$ is governed by that of the corresponding plane in $$M_0$$ . We construct a counterexample of this phenomenon when $$M_0$$ is non-arithmetic.more » « less
An official website of the United States government

