skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Heliphyrin: a ring open porphyrinoid with helical chirality
We report the template-based synthesis of a new series of ring-open phthalocyanine analogs that exhibit helical chirality. These conjugated helical porphyrinoids also strongly absorb across the entire visible spectrum.  more » « less
Award ID(s):
2153081
PAR ID:
10512027
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Royal Society of Chemistry
Date Published:
Journal Name:
Inorganic Chemistry Frontiers
ISSN:
2052-1553
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The Multi-terrain Amphibious ARCtic explOrer (MAARCO) rover is an amphibious arctic rover designed to explore arctic regions in otherwise unsafe or restricted environments. The MAARCO rover consists of a propulsion system with two helical drives made up of hollow cylinder ballasts wrapped in auger or screw shaped blades that provide thrust to propel the vehicle as the drives rotate. Computational fluid dynamic methods provide a better understanding of the helical drives properties effects on hydrodynamic forces. In this paper, the computational fluid dynamic simulations are performed in ANSYS Fluent to observe the hydrodynamic properties of a helical drive. The drag and thrust on the helical drives are simulated for various helical drives with different blade heights and pitch lengths to determine general trends and characteristics of helical drives in water to optimize the vehicle’s abilities to navigate underwater. The helical drive drag is simulated using bluff body drag simulations with a prescribed velocity. The helical drive thrust is simulated using a multi-reference frame (MRF) mesh model with a frame motion replicate flow rotating around a stationary helical drive at a prescribed angular velocity. A convergence study was conducted to test different meshes and turbulence models to determine the most accurate drag and thrust simulation methods. The results demonstrate the effects the blade height and pitch length have on the helical drive thrust and drag properties, while maintaining a constant ballast diameter. From these results a helical drive design can be determined to optimize the net force and therefore the overall vehicle performance. 
    more » « less
  2. Abstract Homochiral helical self‐organizations provide some of the most fundamental architectures of biological macromolecules and of their co‐assemblies although they were first discovered and elucidated only during the early 1950. Helical synthetic covalent macromolecules started to be discovered soon after and were followed by supramolecular macromolecules and their co‐assemblies few decades later. This perspective will provide a brief historical development of chiral helical self‐organizations in biology and in supramolecular chemistry. Helical covalent and supramolecular macromolecules self‐organize and co‐organize helical supramolecular columns and spherical helices that can generate complex liquid crystals, crystals including Frank‐Kasper phases, and quasicrystals. The design of new functions based on synthetic helical assemblies will also be discussed. Personal events from the life of scientists contributing to these developments are also briefly mentioned. 
    more » « less
  3. Abstract Synthetic helical polymers form compact, ordered, and inherently chiral structures, enabling their uses in biomimetic applications as well as catalysis. A challenge in using synthetic helical polymers, however, is their tendency to be sensitive to pH and the presence of nucleophiles, Lewis‐acids, or metal ions. We report a strategy to overcome these shortcomings by adapting catalyst‐transfer polymerization, a living chain‐growth polymerization typically used to access linear conjugated polymers, for the synthesis of helical poly(thiophene)s. We demonstrate that the helical poly(thiophene)s can be synthesized with a single helicity, incorporated into block copolymers, and functionalized at the chain‐ends, enabling further conjugation and functionalization. The helical poly(thiophene)s are stable to a variety of conditions, providing benefits over other helical polymers which contain sensitive imine or carbonyl‐based functional groups. We anticipate that the ability to access homochiral, heterotelechelic helical conjugated polymers and copolymers will enable new uses of these materials in optoelectronics as well as in applications for mimicking biomacromolecules and other polymers with precisely defined sequences. 
    more » « less
  4. Abstract The diverse and heterogeneous terrains in the Arctic, consisting of snow, melting ice, permafrost, ice-covered lakes, sea ice and open ocean, pose serious challenges to locomotion and autonomous navigation capabilities of rovers deployed in the region for data collection and experimentation. The Multi-terrain Amphibious ARCtic explOrer or MAARCO rover is a proposed screw-propelled vehicle that uses helical drives (similar to Archimedes’ screws) to move seamlessly across the diverse terrains in the Arctic. The motion of a pair of helical drives operating in soft or fluid terrain is dictated by the response of the surrounding substrate to the stresses exerted by the rotating helical drives. If the substrate under the rover does not fail when it is moving in a straight line, the linear displacement of the rover (x) and the number of rotations of the helical drives (n) are related through x = P · n, where P is the pitch length of the helical drives. However, when the substrate fails, the linear displacement of the rover is less than P · n, i.e., x < P · n. Thus, “x = P · n” motion represents the optimal mode of operation for the rover when moving in a straight line. This paper represents the first ever attempt, to the best of author’s knowledge, to derive the conditions necessary for the application of the holonomic constraint x = P · n to the dynamics of a helical drives-based rover. 
    more » « less
  5. Abstract Water-soluble peptidomimetics, including peptoids, are promising functional surrogates for biologically relevant, amphiphilic, helical peptides. Twenty amphiphilic peptoid hexamers with predicted helical structures were designed, prepared, and studied using circular dichroism (CD) spectroscopy. The site-specific contributions of aromatic and charged residues to the helical structure of peptoid hexamers in aqueous solution was evaluated, revealing that aromatic residue positioning most significantly impacts structure. 
    more » « less