Magnetic circular dichroism (MCD) and UV-Vis-NIR spectroscopy were used to investigate the spectroscopic signatures of the triplet-multiplet and other transitions observed in the simplest [Formula: see text] (PctBuCu and Pc(SO3Na)4Cu) and [Formula: see text] (PctBuV=O and TPz(OAr)8V=O) phthalocyanine systems. Density Functional Theory (DFT) and time-dependent DFT (TDDFT) calculations allowed accurate correlation between the experimental and theoretical data. In particular, similarities between vibronic profiles in Q-band and triplet-multiplet band regions as well as the presence of MCD [Formula: see text]-terms associated with the 0-0 transitions support the relationship between the Q- and triplet-multiplet transitions.
more »
« less
Crystal structure, stability, spectroscopy, electronic structure, and ultrafast excited-state dynamics of the elusive iron(II) phthalocyanine axially coordinated with DABCO ligands
The elusive PcFe(DABCO)2(Pc = phthalocyaninato(2-) ligand; DABCO = 1,4-diazabicyclo[2.2.2]octane) complex was prepared and characterized by UV-Vis, MCD,1H NMR, and Mössbauer spectroscopies. The X-ray crystal structure of this complex indicates the longest Fe-N(DABCO) bond distance among all known PcFeL2complexes with nitrogen donors as the axial ligands. The target compound is only stable in the presence of large access of the axial ligand and rapidly converts into the (PcFe)2O [Formula: see text]-oxo dimer even at a modest temperature. The electronic structure of the PcFe(DABCO)2complex was elucidated by DFT and TDDFT methods. The DFT calculations predicted a very small singlet-triplet gap in this compound. The femtosecond transient absorption spectroscopy is indicative of extremely fast ([Formula: see text]200 fs) deactivation of the first excited state in PcFe(DABCO)2with a lack of formation of the long-lived low-energy triplet state.
more »
« less
- Award ID(s):
- 2153081
- PAR ID:
- 10512032
- Publisher / Repository:
- World Scientific
- Date Published:
- Journal Name:
- Journal of Porphyrins and Phthalocyanines
- Volume:
- 27
- Issue:
- 07n10
- ISSN:
- 1088-4246
- Page Range / eLocation ID:
- 1131 to 1141
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The molecular structure of the unsubstituted iron(III) phthalocyanine [Formula: see text]-oxo(1) dimer ((PcFe)2O) was determined by single crystal X-ray diffraction. In agreement with the earlier speculations, the dimer has a bent (Fe-O-Fe angle is 152.4[Formula: see text]) structure. The interplay between the [Formula: see text]-[Formula: see text] interactions and steric hindrances caused by the isoindole units led to the observed staggering angle of [Formula: see text]24[Formula: see text] between two phthalocyanine ligands. The high-spin iron(III) centers are located significantly above the phthalocyanine N4 planes (0.57–0.58 Å). Several DFT exchange-correlation functionals were used to calculate the absolute value and sign of the Mössbauer quadrupole splitting and antiferromagnetic coupling constant for X-ray determined geometry of (PcFe)2O. It was demonstrated that the hybrid functionals provide the correct sign of the electric field gradient and the magnitude of the antiferromagnetic coupling constant compared to the pure functionals.more » « less
-
Abstract Solid‐state NMR measurements coupled with density functional theory (DFT) calculations demonstrate how hydrogen positions can be refined in a crystalline system. The precision afforded by rotational‐echo double‐resonance (REDOR) NMR to interrogate13C–1H distances is exploited along with DFT determinations of the13C tensor of carbonates (CO32−). Nearby1H nuclei perturb the axial symmetry of the carbonate sites in the hydrated carbonate mineral, hydromagnesite [4 MgCO3⋅Mg(OH)2⋅4 H2O]. A match between the calculated structure and solid‐state NMR was found by testing multiple semi‐local and dispersion‐corrected DFT functionals and applying them to optimize atom positions, starting from X‐ray diffraction (XRD)‐determined atomic coordinates. This was validated by comparing calculated to experimental13C{1H} REDOR and13C chemical shift anisotropy (CSA) tensor values. The results show that the combination of solid‐state NMR, XRD, and DFT can improve structure refinement for hydrated materials.more » « less
-
Abstract Flexible metal–organic Frameworks (MOFs) are an interesting class of materials due to their diverse properties. One representative of this class is the layered‐pillar MOF DUT‐8(Ni). This MOF consists of Ni2paddle wheels interconnected by naphthalene dicarboxylate linkers and dabco pillars (Ni2(ndc)2(dabco), ndc = 2,6‐naphthalene–dicarboxylate, dabco = 1,4‐diazabicyclo‐[2.2.2]‐octane). DUT‐8(Ni) undergoes a volume change of over 140% upon adsorption of guest molecules. Herein, a ligand field molecular mechanics (LFMM) study of the CO2‐induced flexibility of DUT‐8(Ni) is presented. LFMM is able to reproduce experimental and DFT structural features as well as properties that require large simulation cells. It is shown that the transformation energy from a closed to open state of the MOF is overcompensated fivefold by the host–guest interactions. Structural characteristics of the MOF explain the shape of the energy profile at different loading states and provide useful insights to the interpretation of previous experimental results.more » « less
-
We report results from experiments with the quinoline-O2 complex, which was photodissociated using light near 312 nm. Photodissociation resulted in formation of the lowest excited state of oxygen, O2 a 1Δg, which we detected using resonance enhanced multiphoton ionization and velocity map ion imaging. The O2+ ion image allowed for a determination of the center-of-mass translational energy distribution, P(ET), following complex dissociation. We also report results of electronic structure calculations for the quinoline singlet ground state and lowest energy triplet state. From the CCSD/aug-cc-pVDZ//(U)MP2/cc-pVDZ calculations, we determined the lowest energy triplet state to have ππ* electronic character and to be 2.69 eV above the ground state. We also used electronic structure calculations to determine the geometry and binding energy for several quinoline-O2 complexes. The calculations indicated that the most strongly bound complex has a well depth of about 0.11 eV and places the O2 moiety above and approximately parallel to the quinoline ring system. By comparing the experimental P(ET) with the energy for the singlet ground state and the lowest energy triplet state, we concluded that the quinoline product was formed in the lowest energy triplet state. Finally, we found the experimental P(ET) to be in agreement with a Prior translational energy distribution, which suggests a statistical dissociation for the complex.more » « less