skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Finally: The X-ray crystal structure of the illusive unsubstituted iron(III) phthalocyanine μ-oxo(1) dimer. DFT-predicted Mössbauer quadrupole splitting and antiferromagnetic coupling constants for X-ray geometry
The molecular structure of the unsubstituted iron(III) phthalocyanine [Formula: see text]-oxo(1) dimer ((PcFe)2O) was determined by single crystal X-ray diffraction. In agreement with the earlier speculations, the dimer has a bent (Fe-O-Fe angle is 152.4[Formula: see text]) structure. The interplay between the [Formula: see text]-[Formula: see text] interactions and steric hindrances caused by the isoindole units led to the observed staggering angle of [Formula: see text]24[Formula: see text] between two phthalocyanine ligands. The high-spin iron(III) centers are located significantly above the phthalocyanine N4 planes (0.57–0.58 Å). Several DFT exchange-correlation functionals were used to calculate the absolute value and sign of the Mössbauer quadrupole splitting and antiferromagnetic coupling constant for X-ray determined geometry of (PcFe)2O. It was demonstrated that the hybrid functionals provide the correct sign of the electric field gradient and the magnitude of the antiferromagnetic coupling constant compared to the pure functionals.  more » « less
Award ID(s):
2153081
PAR ID:
10592818
Author(s) / Creator(s):
; ;
Publisher / Repository:
World Scientific
Date Published:
Journal Name:
Journal of Porphyrins and Phthalocyanines
Volume:
28
Issue:
05
ISSN:
1088-4246
Page Range / eLocation ID:
300 to 307
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The elusive PcFe(DABCO)2(Pc = phthalocyaninato(2-) ligand; DABCO = 1,4-diazabicyclo[2.2.2]octane) complex was prepared and characterized by UV-Vis, MCD,1H NMR, and Mössbauer spectroscopies. The X-ray crystal structure of this complex indicates the longest Fe-N(DABCO) bond distance among all known PcFeL2complexes with nitrogen donors as the axial ligands. The target compound is only stable in the presence of large access of the axial ligand and rapidly converts into the (PcFe)2O [Formula: see text]-oxo dimer even at a modest temperature. The electronic structure of the PcFe(DABCO)2complex was elucidated by DFT and TDDFT methods. The DFT calculations predicted a very small singlet-triplet gap in this compound. The femtosecond transient absorption spectroscopy is indicative of extremely fast ([Formula: see text]200 fs) deactivation of the first excited state in PcFe(DABCO)2with a lack of formation of the long-lived low-energy triplet state. 
    more » « less
  2. Mono-hydroxychlorins are uncommon macrocycles that have only been synthetically realized by modifying porphyrin rings using the harsh oxidizing agent OsO4. We show here that a more directed delivery of the mono-hydroxychlorin may be concomitantly obtained from the oxidation of porphyrinogen using the mild conditions of the high dilution Lindsey porphyrin forming reaction where water content is minimized by using dry CHCl3within the environment of a glovebox. We now report the direct synthesis of 17,18-dihydro-18-hydroxy-5,10,15,20-tetrakis-(4-fluoro,2,6-dimethylphenyl)-porphyrin (2H-TFChl-[Formula: see text]OH) together with the corresponding freebase porphyrin TFP. The TFP has been metalated with FeBr2and MgBr2•OEt2resulting in metalloporphyrins Fe(III)TFP(Cl) and Mg(II)-TFP which have been structurally characterized by single-crystal X-ray crystallography. We find that the excited state properties of the mono-hydroxychlorin are similar to that of its parent TFP and Mg(II)TFP porphyrin congeners. Excited state deactivation by vibronic coupling to the high energy O-H oscillator is circumvented with the hydroxyl group remote to the 18[Formula: see text]-electron framework of the chlorin ring. These results reveal that strong H-bonding groups may be introduced on the periphery of the chlorin ring while maintaining the light-gathering properties that lie at the heart of photosynthesis of the chlorin ring. 
    more » « less
  3. Beta-phase gallium oxide ([Formula: see text]-Ga 2 O 3 ) is a promising semiconductor for high frequency, high temperature, and high voltage applications. In addition to the [Formula: see text]-phase, numerous other polymorphs exist and understanding the competition between phases is critical to control practical devices. The phase formation sequence of Ga 2 O 3 , starting from amorphous thin films, was determined using lateral-gradient laser spike annealing at peak temperatures of 500–1400 °C on 400 μs to 10 ms timescales, with transformations characterized by optical microscopy, x-ray diffraction, and transmission electron microscopy (TEM). The resulting phase processing map showed the [Formula: see text]-phase, a defect-spinel structure, first nucleating under all annealing times for temperatures from 650 to 800 °C. The cross-sectional TEM at the onset of the [Formula: see text]-phase formation showed nucleation near the film center with no evidence of heterogeneous nucleation at the interfaces. For temperatures above 850 °C, the thermodynamically stable [Formula: see text]-phase was observed. For anneals of 1–4 ms and temperatures below 1200 °C, small randomly oriented grains were observed. Large grains were observed for anneals below 1 ms and above 1200 °C, with anneals above 4 ms and 1200 °C resulting in textured films. The formation of the [Formula: see text]-phase prior to [Formula: see text]-phase, coupled with the observed grain structure, suggests that the [Formula: see text]-phase is kinetically preferred during thermal annealing of amorphous films, with [Formula: see text]-phase subsequently forming by nucleation at higher temperatures. The low surface energy of the [Formula: see text]-phase implied by these results suggests an explanation for the widely observed [Formula: see text]-phase inclusions in [Formula: see text]-phase Ga 2 O 3 films grown by a variety of synthesis methods. 
    more » « less
  4. The in situ metalorganic chemical vapor deposition (MOCVD) growth of Al 2 O 3 dielectrics on β-Ga 2 O 3 and β-(Al x Ga 1−x ) 2 O 3 films is investigated as a function of crystal orientations and Al compositions of β-(Al x Ga 1−x ) 2 O 3 films. The interface and film qualities of Al 2 O 3 dielectrics are evaluated by high-resolution x-ray diffraction and scanning transmission electron microscopy imaging, which indicate the growth of high-quality amorphous Al 2 O 3 dielectrics with abrupt interfaces on (010), (100), and [Formula: see text] oriented β-(Al x Ga 1−x ) 2 O 3 films. The surface stoichiometries of Al 2 O 3 deposited on all orientations of β-(Al x Ga 1−x ) 2 O 3 are found to be well maintained with a bandgap energy of 6.91 eV as evaluated by high-resolution x-ray photoelectron spectroscopy, which is consistent with the atomic layer deposited (ALD) Al 2 O 3 dielectrics. The evolution of band offsets at both in situ MOCVD and ex situ ALD deposited Al 2 O 3 /β-(Al x Ga 1−x ) 2 O 3 is determined as a function of Al composition, indicating the influence of the deposition method, orientation, and Al composition of β-(Al x Ga 1−x ) 2 O 3 films on resulting band alignments. Type II band alignments are determined at the MOCVD grown Al 2 O 3 /β-(Al x Ga 1−x ) 2 O 3 interfaces for the (010) and (100) orientations, whereas type I band alignments with relatively low conduction band offsets are observed along the [Formula: see text] orientation. The results from this study on MOCVD growth and band offsets of amorphous Al 2 O 3 deposited on differently oriented β-Ga 2 O 3 and β-(Al x Ga 1−x ) 2 O 3 films will potentially contribute to the design and fabrication of future high-performance β-Ga 2 O 3 and β-(Al x Ga 1−x ) 2 O 3 based transistors using MOCVD in situ deposited Al 2 O 3 as a gate dielectric. 
    more » « less
  5. Abstract In an effort to reconcile the various interpretations for the cation components of the 2p3/2observed in x-ray photoelectron spectroscopy (XPS) of several spinel oxide materials, the XPS spectra of both spinel alloy nanoparticles and crystalline thin films are compared. We observed that different components of the 2p3/2core level XPS spectra, of these inverse spinel thin films, are distinctly surface and bulk weighted, indicating surface-to-bulk core level shifts in the binding energies. Surface-to-bulk core level shifts in binding energies of Ni and Fe 2p3/2core levels of NiFe2O4thin film are observed in angle-resolved XPS. The ratio between surface-weighted components and bulk-weighted components of the Ni and Fe core levels shows appreciable dependency on photoemission angle, with respect to surface normal. XPS showed that the ferrite nanoparticles NixCo1−xFe2O4(x= 0.2, 0.5, 0.8, 1) resemble the surface of the NiFe2O4thin film. Surface-to-bulk core level shifts are also observed in CoFe2O4and NiCo2O4thin films but not as significantly as in NiFe2O4thin film. Estimates of surface stoichiometry of some spinel oxide nanoparticles and thin films suggested that the apportionment between cationic species present could be farther from expectations for thin films as compared to what is seen with nanoparticles. 
    more » « less