skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Synthesis, spectroscopic, and electronic properties of new tetrapyrazinoporphyrazines with eight peripheral 2,6-diisopropylphenol groups
Metal-free, magnesium, titanyl, and vanadyl tetrapyrazinoporphyrazines substituted with eight 2,6-diisopropylphenoxy groups at the peripheral positions were prepared and characterized by NMR, UV-Vis, magnetic circular dichroism (MCD), and mass spectrometry methods. In addition, the Pc(2,6iPrPhO)8VO complex was characterized by EPR spectroscopy and X-ray crystallography. Reaction between TiCl4with 4,5-(2,6-diisopropylphenoxy)phthalonitrile in N,N-dimethylaminoethanol resulted in the formation of a red open-chain trimer, which was characterized by mass spectrometry and X-ray crystallography. Electronic structures of new compounds and their excited state properties were probed by Density Functional Theory (DFT) and Time-Dependent DFT (TDDFT) methods.  more » « less
Award ID(s):
2153081
PAR ID:
10512041
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
World Scientific
Date Published:
Journal Name:
Journal of Porphyrins and Phthalocyanines
Volume:
27
Issue:
01n04
ISSN:
1088-4246
Page Range / eLocation ID:
363 to 372
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract A sterically strained 32π‐electron antiaromatic bis‐BODIPY macrocycle in which two BODIPY fragments are linked byp‐divinylbenzene groups was prepared and characterized. Unlike regular BODIPYs, the fluorescence in this macrocycle is quenched. The broad signals in the NMR spectra of the macrocycle were explained by the vibronic freedom of thep‐divinylbenzene fragments. The possible diradicaloid nature of the macrocycle was excluded on the basis of variable‐temperature EPR spectra in solution and in solid state, which is indicative of its closed‐shell quinoidal structure. Themeso‐C−H bond in the macrocycle and its precursor BODIPY dialdehyde3forms a weak hydrogen bond with THF and is susceptible for the nucleophilic attack by organic amines and cyanide anion. The reaction products of such a nucleophilic attack havemeso‐sp3carbon atoms and were characterized by NMR, mass spectrometry and, in one case, X‐ray crystallography. Unlike the initial bis‐BODIPY macrocycle, the adducts have strong fluorescence in the 400 nm region. The electronic structure and spectroscopic properties of new chromophores were probed by density functional theory (DFT) and time‐dependent DFT (TDDFT) calculations and correlate well with the experimental data. 
    more » « less
  2. null (Ed.)
    Pentacoordinate Al catalysts comprising bipyridine (bpy) and phenanthroline (phen) backbones were synthesized and their catalytic activity in epoxide/anhydride copolymerization was investigated and compared to ( t-Bu salph)AlCl. Stoichiometric reactions of tricyclic anhydrides with Al alkoxide complexes produced ring-opened products that were characterized by NMR spectroscopy, mass spectrometry, and X-ray crystallography, revealing key regio- and stereochemical aspects. 
    more » « less
  3. We report the synthesis of molybdenum and tungsten bromo dicarbonyl complexes (POCOPtBu)MIIBr(CO)2(M  =  Mo or W; POCOPtBu  =  κ3-C6H3-1,3-[OP( tBu)2]2) supported by an anionic PCP pincer ligand, and the chromium complex (PNPtBu)Cr0(CO)3(PNPtBu  =  2,6-bis(di- tert-butyl-phosphinomethyl)pyridine) bearing a neutral PNP pincer scaffold. The three group six complexes described in this study have been characterized by Liquid Injection Field Desorption Ionization Mass Spectrometry (LIFDI-MS), NMR, and IR spectroscopy. Single crystal X-ray diffraction studies show the MoIIand WIIcomplexes adopt a six-coordinate distorted trigonal prismatic geometry, whereas the Cr0complex exhibits a distorted octahedral geometry. 
    more » « less
  4. Abstract The synthesis, characterization, and redox behavior of aryloxide complexes containing an increasing number of internal hydrogen bonds (OEP)Ru(NO)(OArxH) (OEP=octaethylporphyrinato dianion; x=0, 1, 2) are reported. These nitrosyl aryloxide compounds were characterized by X‐ray crystallography, IR and1H NMR spectroscopy. The IR spectra displayed υNOfrequencies in the 1823–1843 cm−1range with compounds possessing more internal hydrogen bonds demonstrating higher υNOfrequencies due to diminished π‐backdonation to the Ru−NO fragment. Comparison of the distinct υNHand δN−Hsignals in the IR and1H NMR spectra of the free and complexed OAr1H/OAr2Hligands support the notion of additional electron density being removed via intramolecular hydrogen bonding. Results of DFT calculations on the (porphine)Ru(NO)(OArxH) models (porphine=unsubstituted porphyrin) reveal that the HOMOs of these complexes have significant axial ligand contributions, whereas the HOMOs of the five‐coordinate [(porphine)RuNO)]+cation resides mostly on the equatorial porphyrin macrocycle. The electrochemical results of these (OEP)Ru(NO)(OArxH) complexes in CH2Cl2reveal first oxidations that occur at increasingly positive potentials when more internal hydrogen bonds are present. Based on the DFT and preliminary IR spectroelectrochemical results, we propose that the electrooxidations result in eventual dissociation of the axial aryloxide ligands. 
    more » « less
  5. Abstract S/N crosstalk species derived from the interconnected reactivity of H2S and NO facilitate the transport of reactive sulfur and nitrogen species in signaling, transport, and regulatory processes. We report here that simple Fe2+ions, such as those that are bioavailable in the labile iron pool (LIP), react with thionitrite (SNO) and perthionitrite (SSNO) to yield the dinitrosyl iron complex [Fe(NO)2(S5)]. In the reaction of FeCl2with SNOwe were able to isolate the unstable intermediate hydrosulfido mononitrosyl iron complex [FeCl2(NO)(SH)], which was characterized by X‐ray crystallography. We also show that [Fe(NO)2(S5)]is a simple synthon for nitrosylated Fe−S clusters via its reduction with PPh3to yield Roussin's Red Salt ([Fe2S2(NO)4]2−), which highlights the role of S/N crosstalk species in the assembly of fundamental Fe−S motifs. 
    more » « less