skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Synthesis, characterization, and liquid injection field desorption ionization mass spectrometry analysis of pincer ligated group 6 (Cr, Mo, W) carbonyl complexes
We report the synthesis of molybdenum and tungsten bromo dicarbonyl complexes (POCOPtBu)MIIBr(CO)2(M  =  Mo or W; POCOPtBu  =  κ3-C6H3-1,3-[OP( tBu)2]2) supported by an anionic PCP pincer ligand, and the chromium complex (PNPtBu)Cr0(CO)3(PNPtBu  =  2,6-bis(di- tert-butyl-phosphinomethyl)pyridine) bearing a neutral PNP pincer scaffold. The three group six complexes described in this study have been characterized by Liquid Injection Field Desorption Ionization Mass Spectrometry (LIFDI-MS), NMR, and IR spectroscopy. Single crystal X-ray diffraction studies show the MoIIand WIIcomplexes adopt a six-coordinate distorted trigonal prismatic geometry, whereas the Cr0complex exhibits a distorted octahedral geometry.  more » « less
Award ID(s):
1956161 2018388
PAR ID:
10391760
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
SAGE Publications
Date Published:
Journal Name:
European Journal of Mass Spectrometry
Volume:
29
Issue:
1
ISSN:
1469-0667
Format(s):
Medium: X Size: p. 58-64
Size(s):
p. 58-64
Sponsoring Org:
National Science Foundation
More Like this
  1. Exposure of (POCOPtBu)Cr(Bn) to 427 nm blue light under 1 atm N2 promoted Cr–CBn bond homolysis and led to N2 activation forming [(POCOPtBu)Cr]2(μ-N2). 
    more » « less
  2. Abstract The reactivity of phosphaalkynes, the isolobal and isoelectronic congeners to alkynes, with metal alkylidyne complexes is explored in this work. Treating the tungsten alkylidyne [tBuOCO]W≡CtBu(THF)2(1) with phosphaalkyne (10) results in the formation of [O2C(tBuC=)W{η2‐(P,C)−P≡C−Ad}(THF)] (13‐tBuTHF) and [O2C(AdC=)W{η2‐(P,C)−P≡C−tBu}(THF)] (13‐AdTHF); derived from the formal reductive migratory insertion of the alkylidyne moiety into a W−Carenebond. Analogous to alkyne metathesis, a stable phosphametallacyclobutadiene complex [tBuOCO]W[κ2‐C(tBu)PC(Ad)] (14) forms upon loss of THF from the coordination sphere of either13‐tBuTHFor13‐AdTHF. Remarkably, the C−C bonds reversibly form/cleave with the addition or removal of THF from the coordination sphere of the formal tungsten(VI) metal center, permitting unprecedented control over the transformation of a tetraanionic pincer to a trianionic pincer and back. Computational analysis offers thermodynamic and electronic reasoning for the reversible equilibrium between13‐tBu/AdTHFand14. 
    more » « less
  3. Abstract The production of olefins via on‐purpose dehydrogenation of alkanes allows for a more efficient, selective and lower cost alternative to processes such as steam cracking. Silica‐supported pincer‐iridium complexes of the form [(≡SiO−R4POCOP)Ir(CO)] (R4POCOP=κ3‐C6H3‐2,6‐(OPR2)2) are effective for acceptorless alkane dehydrogenation, and have been shown stable up to 300 °C. However, while solution‐phase analogues of such species have demonstrated high regioselectivity for terminal olefin production under transfer dehydrogenation conditions at or below 240 °C, in open systems at 300 °C, regioselectivity under acceptorless dehydrogenation conditions is consistently low. In this work, complexes [(≡SiO−tBu4POCOP)Ir(CO)] (1) and [(≡SiO−iPr4PCP)Ir(CO)] (2) were synthesized via immobilization of molecular precursors. These complexes were used for gas‐phase butane transfer dehydrogenation using increasingly sterically demanding olefins, resulting in observed selectivities of up to 77 %. The results indicate that the active site is conserved upon immobilization. 
    more » « less
  4. Abstract Reduction of the cobalt(II) chloride complex, Ph2B(tBuIm)2Co(THF)Cl (1) in the presence oftBuN≡C affords the diamagnetic, square planar cobalt(I) complex Ph2B(tBuIm)2Co(C≡NtBu)2(2). This is a rare example of a 16‐electron cobalt(I) complex that is structurally related to square planar noble metal complexes. Accordingly, the electronic structure of2, as calculated by DFT, reveals that the HOMO is largely dz2in character. Complex2is readily oxidized to its cobalt(II) congener [Ph2B(tBuIm)2Co(C=NtBu)2]BPh4(3‐BPh4), whose EPR spectral parameters are characteristic of low‐spin d7with an unpaired electron in an orbital of dz2parentage. This is also consistent with the results of DFT calculations. Despite its 16‐electron configuration and the dz2parentage of the HOMO, the only tractable reactions of2involve one electron oxidation to afford3. 
    more » « less
  5. Abstract The incorporation of CO2into organometallic and organic molecules represents a sustainable way to prepare carboxylates. The mechanism of reductive carboxylation of alkyl halides has been proposed to proceed through the reduction of NiIIto NiIby either Zn or Mn, followed by CO2insertion into NiI‐alkyl species. No experimental evidence has been previously established to support the two proposed steps. Demonstrated herein is that the direct reduction of (tBu‐Xantphos)NiIIBr2by Zn affords NiIspecies. (tBu‐Xantphos)NiI‐Me and (tBu‐Xantphos)NiI‐Et complexes undergo fast insertion of CO2at 22 °C. The substantially faster rate, relative to that of NiIIcomplexes, serves as the long‐sought‐after experimental support for the proposed mechanisms of Ni‐catalyzed carboxylation reactions. 
    more » « less