skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The evolution of cnidarian stinging cells supports a Precambrian radiation of animal predators
Abstract Cnidarians—the phylum including sea anemones, corals, jellyfish, and hydroids—are one of the oldest groups of predatory animals. Nearly all cnidarians are carnivores that use stinging cells called cnidocytes to ensnare and/or envenom their prey. However, there is considerable diversity in cnidocyte form and function. Tracing the evolutionary history of cnidocytes may therefore provide a proxy for early animal feeding strategies. In this study, we generated a time‐calibrated molecular clock of cnidarians and performed ancestral state reconstruction on 12 cnidocyte types to test the hypothesis that the original cnidocyte was involved in prey capture. We conclude that the first cnidarians had only the simplest and least specialized cnidocyte type (the isorhiza) which was just as likely to be used for adhesion and/or defense as the capture of prey. A rapid diversification of specialized cnidocytes occurred through the Ediacaran (~654–574 million years ago), with major subgroups developing unique sets of cnidocytes to match their distinct feeding styles. These results are robust to changes in the molecular clock model, and are consistent with growing evidence for an Ediacaran diversification of animals. Our work also provides insight into the evolution of this complex cell type, suggesting that convergence of forms is rare, with the mastigophore being an interesting counterexample.  more » « less
Award ID(s):
2044871
PAR ID:
10512073
Author(s) / Creator(s):
;
Publisher / Repository:
John Wiley & Sons, Inc
Date Published:
Journal Name:
Evolution & Development
Volume:
26
Issue:
2
ISSN:
1520-541X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Cnidocytes are the explosive stinging cells unique to cnidarians (corals, jellyfish, etc). Specialized for prey capture and defense, cnidocytes comprise a group of over 30 morphologically and functionally distinct cell types. These unusual cells are iconic examples of biological novelty but the developmental mechanisms driving diversity of the stinging apparatus are poorly characterized, making it challenging to understand the evolutionary history of stinging cells. Using CRISPR/Cas9-mediated genome editing in the sea anemone Nematostella vectensis , we show that a single transcription factor ( NvSox2 ) acts as a binary switch between two alternative stinging cell fates. Knockout of NvSox2 causes a transformation of piercing cells into ensnaring cells, which are common in other species of sea anemone but appear to have been silenced in N. vectensis . These results reveal an unusual case of single-cell atavism and expand our understanding of the diversification of cell type identity. 
    more » « less
  2. Abstract Social predation is a common strategy used by predators to subdue and consume prey. Animals that use this strategy have many ways of finding each other, organizing behaviors and consuming prey. There is wide variation in the extent to which these behaviors are coordinated and the stability of individual roles. This study characterizes social predation by the nudibranch mollusc,Berghia stephanieae, which is a specialist predator that eats only the sea anemone,Exaiptasia diaphana. A combination of experimental and modeling approaches showed thatB. stephanieaedoes predate uponE. diaphanain groups. The extent of social feeding was not altered by length of food deprivation, suggesting that animals are not shifting strategies based on internal state. It was unclear what cues the individualBerghiaused to find each other; choice assays testing whether they followed slime trails, were attracted to injured anemones, or preferred conspecifics feeding did not reveal any cues. Individuals did not exhibit stable roles, such as leader or follower, rather the population exhibited fission-fusion dynamics with temporary roles during predation. Thus, theBerghiaprovides an example of a specialist predator of dangerous prey that loosely organizes social feeding, which persists across hunger states and uses temporary individual roles; however, the cues that it uses for aggregation are unknown. Significance StatementSocial predation is a strategy to hunt dangerous prey and minimize injury. Many nudibranchs specialize as predators of cnidarians, which are dangerous to them. Although nudibranchs are typically characterized as solitary hunters, we provide evidence that social predation strategies may be used by a species that specializes on one species of sea anemone. The study showed that the individual sea slugs assumed temporary roles for establishing groups and that the group dynamics were unstable. However, the cues that the nudibranchs use to aggregate remain elusive. 
    more » « less
  3. Cnidocytes (i.e., stinging cells) are an unequivocally novel cell type used by cnidarians (i.e., corals, jellyfish, and their kin) to immobilize prey. Although they are known to share a common evolutionary origin with neurons, the developmental program that promoted the emergence of cnidocyte fate is not known. Using functional genomics in the sea anemone, Nematostella vectensis , we show that cnidocytes develop by suppression of neural fate in a subset of neurons expressing RFamide. We further show that a single regulatory gene, a C 2 H 2 -type zinc finger transcription factor (ZNF845), coordinates both the gain of novel (cnidocyte-specific) traits and the inhibition of ancestral (neural) traits during cnidocyte development and that this gene arose by domain shuffling in the stem cnidarian. Thus, we report a mechanism by which a truly novel regulatory gene (ZNF845) promotes the development of a truly novel cell type (cnidocyte) through duplication of an ancestral cell lineage (neuron) and inhibition of its ancestral identity (RFamide). 
    more » « less
  4. null (Ed.)
    Abstract Synopsis Siphonophores are free-living predatory colonial hydrozoan cnidarians found in every region of the ocean. Siphonophore tentilla (tentacle side branches) are unique biological structures for prey capture, composed of a complex arrangement of cnidocytes (stinging cells) bearing different types of nematocysts (stinging capsules) and auxiliary structures. Tentilla present an extensive morphological and functional diversity across species. While associations between tentillum form and diet have been reported, the evolutionary history giving rise to this morphological diversity is largely unexplored. Here we examine the evolutionary gains and losses of novel tentillum substructures and nematocyst types on the most recent siphonophore phylogeny. Tentilla have a precisely coordinated high-speed strike mechanism of synchronous unwinding and nematocyst discharge. Here we characterize the kinematic diversity of this prey capture reaction using high-speed video and find relationships with morphological characters. Since tentillum discharge occurs in synchrony across a broad morphological diversity, we evaluate how phenotypic integration is maintaining character correlations across evolutionary time. We found that the tentillum morphospace has low dimensionality, identified instances of heterochrony and morphological convergence, and generated hypotheses on the diets of understudied siphonophore species. Our findings indicate that siphonophore tentilla are phenotypically integrated structures with a complex evolutionary history leading to a phylogenetically-structured diversity of forms that are predictive of kinematic performance and feeding habits. 
    more » « less
  5. Abstract Animals have myriad adaptations to help them hunt and feed in the most efficient and effective manner. One mysterious behavior related to hunting and feeding is the posterior toe tapping behavior of some frogs. Biologists and hobbyists alike have long noticed this behavior, but there is little empirical data to explain its causes and consequences. To test the hypothesis that tapping is related to feeding and modulated by environmental context, we conducted a series of related experiments in the Dyeing poison frog,Dendrobates tinctorius. We first confirmed that tap rate was higher during feeding as has been observed in other species. Interestingly, this effect was heightened in the presence of a conspecific. We next asked whether frogs tapped less under conditions when prey were visible, but inaccessible. Finally, we asked whetherD. tinctoriusadjusted tap rate based on substrate characteristics and whether prey capture success was higher when tapping. In addition to confirming an association between tapping and feeding, our work demonstrates modulation of toe tapping based on social context, prey accessibility, and substrate characteristics. Based on our findings, we suggest that tapping could act to induce prey movement and thereby facilitate prey detection and capture by frogs. 
    more » « less