skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A hybrid observer for linear systems under delayed sporadic measurements
This paper proposes a hybrid observer for state estimation over a network. The network provides delayed measurements of the output of the plant at time instants that are not necessarily periodic and are accompanied by timestamps provided by a clock that synchronizes with the clock of the observer in finite time. The proposed observer, along with the plant and communication network, are modeled by a hybrid dynamical system that has two timers, a logic variable, and two memory states to capture the mechanisms involved in the events associated with sampling and arrival of information, as well as the logic in the estimation algorithm. The hybrid model also includes a generic clock synchronization scheme to cope with a mismatch between the clocks at the plant and the observer. Convergence properties of the estimation error of the system are shown analytically and supported by numerical examples.  more » « less
Award ID(s):
2111688 2039054
PAR ID:
10512124
Author(s) / Creator(s):
; ;
Publisher / Repository:
International Journal of Robust and Nonlinear Control
Date Published:
Journal Name:
International Journal of Robust and Nonlinear Control
Volume:
34
Issue:
10
ISSN:
1049-8923
Page Range / eLocation ID:
6610 to 6635
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract A two‐time‐scale system involves both fast and slow dynamics. This article studies observer design for general nonlinear two‐time‐scale systems and presents two alternative nonlinear observer design approaches, one full‐order and one reduced‐order. The full‐order observer is designed by following a scheme to systematically select design parameters, so that the fast and slow observer dynamics are assigned to estimate the corresponding system modes. The reduced‐order observer is derived based on a lower dimensional model to reconstruct the slow states, along with the algebraic slow‐motion invariant manifold function to reconstruct the fast states. Through an error analysis, it is shown that the reduced‐order observer is capable of providing accurate estimation of the states for the detailed system with an exponentially decaying estimation error. In the last part of the article, the two proposed observers are designed for an anaerobic digestion process, as an illustrative example to evaluate their performance and convergence properties. 
    more » « less
  2. The problem of distributed networked sensor agents jointly estimating the state of a plant given by a linear time-invariant system is studied. Each agent can only measure the output of the plant at intermittent time instances, at which times the agent also sends the received plant measurement and its estimate to its neighbors. At each agent, a decentralized observer is attached which utilizes the asynchronous incoming information being sent from its neighbors to drive its own estimate to the state of the plant. We provide sufficient conditions that guarantee global exponential stability of the zero estimation error set. Numerical illustrations are provided. 
    more » « less
  3. This paper focuses on the detection of cyber-attack on a communication channel and simultaneous radar health monitoring for a connected vehicle. A semi-autonomous adaptive cruise control (SA-ACC) vehicle is considered which has wireless communication with its immediately preceding vehicle to operate at small time-gap distances without creating string instability. However, the reliability of the wireless connectivity is critical for ensuring safe vehicle operation. The presence of two unknown inputs related to both sensor failure and cyber-attack seemingly poses a difficult estimation challenge. The dynamic system is first represented in descriptor system form. An observer with estimation error dynamics decoupled from the cyber-attack signal is developed. The performance of the observer is extensively evaluated in simulations. The estimation system is able to detect either a fault in the velocity measurement radar channel or a cyber-attack. Also, the proposed observer-based controller achieves resilient SA-ACC system under the cyber-attacks. The fundamental estimation algorithm developed herein can be extended in the future to enable cyber-attack detection in more complex connected vehicle architectures. 
    more » « less
  4. Heck, Michelle (Ed.)
    ABSTRACT Plant-associated microbial assemblages are known to shift at time scales aligned with plant phenology, as influenced by the changes in plant-derived nutrient concentrations and abiotic conditions observed over a growing season. But these same factors can change dramatically in a sub-24-hour period, and it is poorly understood how such diel cycling may influence plant-associated microbiomes. Plants respond to the change from day to night via mechanisms collectively referred to as the internal “clock,” and clock phenotypes are associated with shifts in rhizosphere exudates and other changes that we hypothesize could affect rhizosphere microbes. The mustardBoechera strictahas wild populations that contain multiple clock phenotypes of either a 21- or a 24-hour cycle. We grew plants of both phenotypes (two genotypes per phenotype) in incubators that simulated natural diel cycling or that maintained constant light and temperature. Under both cycling and constant conditions, the extracted DNA concentration and the composition of rhizosphere microbial assemblages differed between time points, with daytime DNA concentrations often triple what were observed at night and microbial community composition differing by, for instance, up to 17%. While we found that plants of different genotypes were associated with variation in rhizosphere assemblages, we did not see an effect on soil conditioned by a particular host plant circadian phenotype on subsequent generations of plants. Our results suggest that rhizosphere microbiomes are dynamic at sub-24-hour periods, and those dynamics are shaped by diel cycling in host plant phenotype. IMPORTANCEWe find that the rhizosphere microbiome shifts in composition and extractable DNA concentration in sub-24-hour periods as influenced by the plant host’s internal clock. These results suggest that host plant clock phenotypes could be an important determinant of variation in rhizosphere microbiomes. 
    more » « less
  5. Enhancing the precision of measurements by harnessing entanglement is a long-sought goal in quantum metrology1,2. Yet attaining the best sensitivity allowed by quantum theory in the presence of noise is an outstanding challenge, requiring optimal probe-state generation and read-out strategies3,4,5,6,7. Neutral-atom optical clocks8, which are the leading systems for measuring time, have shown recent progress in terms of entanglement generation9,10,11 but at present lack the control capabilities for realizing such schemes. Here we show universal quantum operations and ancilla-based read-out for ultranarrow optical transitions of neutral atoms. Our demonstration in a tweezer clock platform9,12,13,14,15,16 enables a circuit-based approach to quantum metrology with neutral-atom optical clocks. To this end, we demonstrate two-qubit entangling gates with 99.62(3)% fidelity—averaged over symmetric input states—through Rydberg interactions15,17,18 and dynamical connectivity19 for optical clock qubits, which we combine with local addressing16 to implement universally programmable quantum circuits. Using this approach, we generate a near-optimal entangled probe state1,4, a cascade of Greenberger–Horne–Zeilinger states of different sizes, and perform a dual-quadrature5 Greenberger–Horne–Zeilinger read-out. We also show repeated fast phase detection with non-destructive conditional reset of clock qubits and minimal dead time between repetitions by implementing ancilla-based quantum logic spectroscopy20 for neutral atoms. Finally, we extend this to multi-qubit parity checks and measurement-based, heralded, Bell-state preparation21,22,23,24. Our work lays the foundation for hybrid processor–clock devices with neutral atoms and more generally points to a future of practical applications for quantum processors linked with quantum sensors25. 
    more » « less