skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Spatially Resolved [C ii] Survey of 31 z ∼ 7 Massive Galaxies Hosting Luminous Quasars
Abstract The [Cii] 158μm emission line and the underlying far-infrared (FIR) dust continuum are important tracers for studying star formation and kinematic properties of early galaxies. We present a survey of the [Cii] emission lines and FIR continua of 31 luminous quasars atz> 6.5 using the Atacama Large Millimeter Array (ALMA) and the NOrthern Extended Millimeter Array at sub-arcsec resolution. This survey more than doubles the number of quasars with [Cii] and FIR observations at these redshifts and enables statistical studies of quasar host galaxies deep into the epoch of reionization. We detect [Cii] emission in 27 quasar hosts with a luminosity range ofL[CII]= (0.3–5.5) × 109Land detect the FIR continuum of 28 quasar hosts with a luminosity range ofLFIR= (0.5–13.0) × 1012L. BothL[CII]andLFIRare correlated (ρ≃ 0.4) with the quasar bolometric luminosity, albeit with substantial scatter. The quasar hosts detected by ALMA are clearly resolved with a median diameter of ∼5 kpc. About 40% of the quasar host galaxies show a velocity gradient in [Cii] emission, while the rest show either dispersion-dominated or disturbed kinematics. Basic estimates of the dynamical masses of the rotation-dominated host galaxies yieldMdyn= (0.1–7.5) × 1011M. Considering our findings alongside those of literature studies, we found that the ratio betweenMBHandMdynis about 10 times higher than that of localMBH–Mdynrelation on average but with substantial scatter (the ratio difference ranging from ∼0.6 to 60) and large uncertainties.  more » « less
Award ID(s):
2308258
PAR ID:
10512223
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
968
Issue:
1
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 9
Size(s):
Article No. 9
Sponsoring Org:
National Science Foundation
More Like this
  1. We present Atacama Large Millimeter/submillimeter Array (ALMA) sub-kiloparsec- to kiloparsec-scale resolution observations of the [C II], CO (9–8), and OH+(11–01) lines along with their dust continuum emission toward the far-infrared (FIR) luminous quasar SDSS J231038.88+185519.7 atz = 6.0031, to study the interstellar medium distribution, the gas kinematics, and the quasar-host system dynamics. We decompose the intensity maps of the [C II] and CO (9–8) lines and the dust continuum with two-dimensional elliptical Sérsic models. The [C II] brightness follows a flat distribution with a Sérsic index of 0.59. The CO (9–8) line and the dust continuum can be fit with an unresolved nuclear component and an extended Sérsic component with a Sérsic index of ∼1, which may correspond to the emission from an active galactic nucleus dusty molecular torus and a quasar host galaxy, respectively. The different [C II] spatial distribution may be due to the effect of the high dust opacity, which increases the FIR background radiation on the [C II] line, especially in the galaxy center, significantly suppressing the [C II] emission profile. The dust temperature drops with distance from the center. The effective radius of the dust continuum is smaller than that of the line emission and the dust mass surface density, but is consistent with that of the star formation rate surface density. This may indicate that the dust emission is a less robust tracer of the dust and gas distribution but is a decent tracer of the obscured star formation activity. The OH+(11–01) line shows a P-Cygni profile with an absorption at ∼–400 km s−1, which may indicate an outflow with a neutral gas mass of (6.2 ± 1.2)×108 Malong the line of sight. We employed a three-dimensional tilted ring model to fit the [C II] and CO (9–8) data cubes. The two lines are both rotation dominated and trace identical disk geometries and gas motions. This suggest that the [C II] and CO (9–8) gas are coplanar and corotating in this quasar host galaxy. The consistent circular velocities measured with [C II] and CO (9–8) lines indicate that these two lines trace a similar gravitational potential. We decompose the circular rotation curve measured from the kinematic model fit to the [C II] line into four matter components (black hole, stars, gas, and dark matter). The quasar-starburst system is dominated by baryonic matter inside the central few kiloparsecs. We constrain the black hole mass to be 2.97+0.51-0.77 × 109M; this is the first time that the dynamical mass of a black hole has been measured atz ∼ 6. This mass is consistent with that determined using the scaling relations from quasar emission lines. A massive stellar component (on the order of 109 M) may have already existed when the Universe was only ∼0.93 Gyr old. The relations between the black hole mass and the baryonic mass of this quasar indicate that the central supermassive black hole may have formed before its host galaxy. 
    more » « less
  2. We present JWST/NIRSpec integral field data of the quasar PJ308-21 atz = 6.2342. As shown by previous ALMA and HST imaging, the quasar has two companion sources, interacting with the quasar host galaxy. The high-resolution G395H/290LP NIRSpec spectrum covers the 2.87 − 5.27 μm wavelength range and shows the rest-frame optical emission of the quasar with exquisite quality (signal-to-noise ratio ∼100 − 400 per spectral element). Based on the Hβline from the broad line region, we obtain an estimate of the black hole massMBH, Hβ ∼ 2.7 × 109 M. This value is within a factor ≲1.5 of the Hα-based black hole mass from the same spectrum (MBH, Hα ∼ 1.93 × 109 M) and is consistent with a previous estimate relying on the Mg IIλ2799 line (MBH, MgII ∼ 2.65 × 109 M). All theseMBHestimates are within the ∼0.5 dex intrinsic scatter of the adopted mass calibrations. The high Eddington ratio of PJ308-21λEdd, Hβ ∼ 0.67 (λEdd, Hα ∼ 0.96) is in line with the overall quasar population atz ≳ 6. The relative strengths of the [O III], Fe II, and Hβlines are consistent with the empirical “Eigenvector 1” correlations as observed for low redshift quasars. We find evidence for blueshifted [O III]λ5007 emission with a velocity offset Δv[O III] = −1922 ± 39 km s−1from the systemic velocity and a full width at half maximum (FWHM)FWHM([O III]) = 2776−74+75km s−1. This may be the signature of outflowing gas from the nuclear region, despite the true values of Δv[O III]andFWHM([O III]) likely being more uncertain due to the blending with Hβand Fe IIlines. Our study demonstrates the unique capabilities of NIRSpec in capturing quasar spectra at cosmic dawn and studying their properties in unprecedented detail. 
    more » « less
  3. Abstract We present measurements of black hole masses and Eddington ratios (λEdd) for a sample of 38 bright (M1450< −24.4 mag) quasars at 5.8 ≲z≲ 7.5, derived from Very Large Telescope/X–shooter near–IR spectroscopy of their broad Civand Mgiiemission lines. The black hole masses (on average,MBH∼ 4.6 × 109M) and accretion rates (0.1 ≲λEdd≲ 1.0) are broadly consistent with that of similarly luminous 0.3 ≲z≲ 2.3 quasars, but there is evidence for a mild increase in the Eddington ratio abovez≳ 6. Combined with deep Atacama Large Millimeter/submillimeter Array (ALMA) observations of the [CII] 158μm line from the host galaxies and VLT/MUSE investigations of the extended Lyαhalos, this study provides fundamental clues to models of the formation and growth of the first massive galaxies and black holes. Compared to local scaling relations,z≳ 5.7 black holes appear to be over-massive relative to their hosts, with accretion properties that do not change with host galaxy morphologies. Assuming that the kinematics of theT∼ 104K gas, traced by the extended Lyαhalos, are dominated by the gravitational potential of the dark matter halo, we observe a similar relation between black hole mass and circular velocity as reported forz∼ 0 galaxies. These results paint a picture where the first supermassive black holes reside in massive halos atz≳ 6 and lead the first stages of galaxy formation by rapidly growing in mass with a duty cycle of order unity. The duty cycle needs to drastically drop toward lower redshifts, while the host galaxies continue forming stars at a rate of hundreds of solar masses per year, sustained by the large reservoirs of cool gas surrounding them. 
    more » « less
  4. ABSTRACT We present band 6 ALMA observations of a heavily obscured radio-loud (L1.4 GHz = 1025.4 W Hz−1) active galactic nucleus (AGN) candidate at zphot = 6.83 ± 0.06 found in the 1.5 deg2 COSMOS field. The ALMA data reveal detections of exceptionally strong [C ii]158 $$\mu$$m (z[C ii] = 6.8532) and underlying dust continuum emission from this object (COS-87259), where the [C ii] line luminosity, line width, and 158 $$\mu$$m continuum luminosity are comparable to those seen from z ∼ 7 sub-mm galaxies and quasar hosts. The 158 $$\mu$$m continuum detection suggests a total infrared luminosity of $$9\times 10^{12}\, \mathrm{ L}_\odot$$ with corresponding very large obscured star formation rate (1300 M⊙ yr−1) and dust mass ($$2\times 10^9\, \mathrm{ M}_\odot$$). The strong break seen between the VIRCam and IRAC photometry perhaps suggests that COS-87259 is an extremely massive reionization-era galaxy with $$M_\ast \approx 1.7\times 10^{11}\, \mathrm{ M}_\odot$$. Moreover, the MIPS, PACS, and SPIRE detections imply that this object harbours an AGN that is heavily obscured ($$\tau _{_{\mathrm{9.7\,\mu m}}}=2.3$$) with a bolometric luminosity of approximately $$5\times 10^{13}\, \mathrm{ L}_\odot$$. Such a very high AGN luminosity suggests that this object is powered by an ≈1.6 × 10$$^9\, \mathrm{ M}_\odot$$ black hole if accreting near the Eddington limit, and is effectively a highly obscured version of an extremely ultraviolet (UV)-luminous (M1450 ≈ −27.3) z ∼ 7 quasar. Notably, these z ∼ 7 quasars are an exceedingly rare population (∼0.001 deg−2), while COS-87259 was identified over a relatively small field. Future very wide area surveys with e.g. Roman and Euclid have the potential to identify many more extremely red yet UV-bright z ≳ 7 objects similar to COS-87259, providing richer insight into the occurrence of intense obscured star formation and supermassive black hole growth among this population. 
    more » « less
  5. Abstract We report the first statistical analyses of [Cii] and dust continuum observations in six strong Oiabsorber fields at the end of the reionization epoch obtained by the Atacama Large Millimeter/submillimeter Array (ALMA). Combined with one [Cii] emitter reported in Wu et al., we detect one Oi-associated [Cii] emitter in six fields. At redshifts of Oiabsorbers in nondetection fields, no emitters are brighter than our detection limit within impact parameters of 50 kpc and velocity offsets between ±200 km s−1. The averaged [Cii]-detection upper limit is <0.06 Jy km s−1(3σ), corresponding to the [Cii] luminosity ofL[CII]< 5.8 × 107Land the [Cii]-based star formation rate of SFR[CII]<5.5Myr−1. Cosmological simulations suggest that only ∼10−2.5[Cii] emitters around Oiabsorbers have comparable SFR to our detection limit. Although the detection in one out of six fields is reported, an order of magnitude number excess of emitters obtained from our ALMA observations supports that the contribution of massive galaxies that caused the metal enrichment cannot be ignored. Further, we also found 14 tentative galaxy candidates with a signal-to-noise ratio of ≈4.3 at large impact parameters (>50 kpc) and having larger outflow velocities within ±600 km s−1. If these detections are confirmed in the future, then the mechanism of pushing metals at larger distances with higher velocities needs to be further explored from the theoretical side. 
    more » « less