The most reliable single-epoch supermassive black hole mass (
This content will become publicly available on May 1, 2025
We present JWST/NIRSpec integral field data of the quasar PJ308-21 at
- PAR ID:
- 10520626
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- Astronomy & Astrophysics
- Date Published:
- Journal Name:
- Astronomy & Astrophysics
- Volume:
- 685
- ISSN:
- 0004-6361
- Page Range / eLocation ID:
- A121
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract M BH) estimates in quasars are obtained by using the velocity widths of low-ionization emission lines, typically the Hβ λ 4861 line. Unfortunately, this line is redshifted out of the optical band atz ≈ 1, leavingM BHestimates to rely on proxy rest-frame ultraviolet (UV) emission lines, such as Civ λ 1549 or Mgii λ 2800, which contain intrinsic challenges when measuring, resulting in uncertainM BHestimates. In this work, we aim at correctingM BHestimates derived from the Civ and Mgii emission lines based on estimates derived from the Hβ emission line. We find that employing the equivalent width of Civ in derivingM BHestimates based on Mgii and Civ provides values that are closest to those obtained from Hβ . We also provide prescriptions to estimateM BHvalues when only Civ , only Mgii , and both Civ and Mgii are measurable. We find that utilizing both emission lines, where available, reduces the scatter of UV-basedM BHestimates by ∼15% when compared to previous studies. Lastly, we discuss the potential of our prescriptions to provide more accurate and precise estimates ofM BHgiven a much larger sample of quasars at 3.20 ≲z ≲ 3.50, where both Mgii and Hβ can be measured in the same near-infrared spectrum. -
Abstract We present rest-frame optical emission-line flux ratio measurements for five
z > 5 galaxies observed by the James Webb Space Telescope Near-Infared Spectrograph (NIRSpec) in the SMACS 0723 Early Release Observations. We add several quality-control and post-processing steps to the NIRSpec pipeline reduction products in order to ensure reliablerelative flux calibration of emission lines that are closely separated in wavelength, despite the uncertainabsolute spectrophotometry of the current version of the reductions. Compared toz ∼ 3 galaxies in the literature, thez > 5 galaxies have similar [Oiii ]λ 5008/Hβ ratios, similar [Oiii ]λ 4364/Hγ ratios, and higher (∼0.5 dex) [NeIII ]λ 3870/[OII ]λ 3728 ratios. We compare the observations to MAPPINGS V photoionization models and find that the measured [NeIII ]λ 3870/[OII ]λ 3728, [Oiii ]λ 4364/Hγ , and [Oiii ]λ 5008/Hβ emission-line ratios are consistent with an interstellar medium (ISM) that has very high ionization ( , units of cm s−1), low metallicity (Z /Z ⊙≲ 0.2), and very high pressure ( , units of cm−3). The combination of [Oiii ]λ 4364/Hγ and [Oiii ]λ (4960 + 5008)/Hβ line ratios indicate very high electron temperatures of , further implying metallicities ofZ /Z ⊙≲ 0.2 with the application of low-redshift calibrations for “T e -based” metallicities. These observations represent a tantalizing new view of the physical conditions of the ISM in galaxies at cosmic dawn. -
We present Atacama Large Millimeter/submillimeter Array (ALMA) sub-kiloparsec- to kiloparsec-scale resolution observations of the [C
II ], CO (9–8), and OH+(11–01) lines along with their dust continuum emission toward the far-infrared (FIR) luminous quasar SDSS J231038.88+185519.7 atz = 6.0031, to study the interstellar medium distribution, the gas kinematics, and the quasar-host system dynamics. We decompose the intensity maps of the [CII ] and CO (9–8) lines and the dust continuum with two-dimensional elliptical Sérsic models. The [CII ] brightness follows a flat distribution with a Sérsic index of 0.59. The CO (9–8) line and the dust continuum can be fit with an unresolved nuclear component and an extended Sérsic component with a Sérsic index of ∼1, which may correspond to the emission from an active galactic nucleus dusty molecular torus and a quasar host galaxy, respectively. The different [CII ] spatial distribution may be due to the effect of the high dust opacity, which increases the FIR background radiation on the [CII ] line, especially in the galaxy center, significantly suppressing the [CII ] emission profile. The dust temperature drops with distance from the center. The effective radius of the dust continuum is smaller than that of the line emission and the dust mass surface density, but is consistent with that of the star formation rate surface density. This may indicate that the dust emission is a less robust tracer of the dust and gas distribution but is a decent tracer of the obscured star formation activity. The OH+(11–01) line shows a P-Cygni profile with an absorption at ∼–400 km s−1, which may indicate an outflow with a neutral gas mass of (6.2 ± 1.2)×108M ⊙along the line of sight. We employed a three-dimensional tilted ring model to fit the [CII ] and CO (9–8) data cubes. The two lines are both rotation dominated and trace identical disk geometries and gas motions. This suggest that the [CII ] and CO (9–8) gas are coplanar and corotating in this quasar host galaxy. The consistent circular velocities measured with [CII ] and CO (9–8) lines indicate that these two lines trace a similar gravitational potential. We decompose the circular rotation curve measured from the kinematic model fit to the [CII ] line into four matter components (black hole, stars, gas, and dark matter). The quasar-starburst system is dominated by baryonic matter inside the central few kiloparsecs. We constrain the black hole mass to be 2.97+0.51-0.77 × 109M ⊙; this is the first time that the dynamical mass of a black hole has been measured atz ∼ 6. This mass is consistent with that determined using the scaling relations from quasar emission lines. A massive stellar component (on the order of 109M ⊙) may have already existed when the Universe was only ∼0.93 Gyr old. The relations between the black hole mass and the baryonic mass of this quasar indicate that the central supermassive black hole may have formed before its host galaxy. -
Abstract Weak emission-line quasars (WLQs) are a subset of type 1 quasars that exhibit extremely weak Ly
α + Nv λ 1240 and/or Civ λ 1549 emission lines. We investigate the relationship between emission-line properties and accretion rate for a sample of 230 “ordinary” type 1 quasars and 18 WLQs atz < 0.5 and 1.5 <z < 3.5 that have rest-frame ultraviolet and optical spectral measurements. We apply a correction to the Hβ -based black hole mass (M BH) estimates of these quasars using the strength of the optical Feii emission. We confirm previous findings that WLQs’M BHvalues are overestimated by up to an order of magnitude using the traditional broad-emission-line region size–luminosity relation. With thisM BHcorrection, we find a significant correlation between Hβ -based Eddington luminosity ratios and a combination of the rest-frame Civ equivalent width and Civ blueshift with respect to the systemic redshift. This correlation holds for both ordinary quasars and WLQs, which suggests that the two-dimensional Civ parameter space can serve as an indicator of accretion rate in all type 1 quasars across a wide range of spectral properties. -
Abstract Galaxy emission-line fluxes can constrain star formation rates (SFRs) and interstellar medium (ISM) ionization. We investigate rest-frame optical emission lines of 71 star-forming galaxies (SFGs) at redshift 0.7 <
z < 7 using JWST/NIRSpec measurements from the Cosmic Evolution Early Release Science survey. We use Hα to measure SFR and utilize Hubble Space Telescope CANDELS stellar mass estimates to determine specific SFR (sSFR) and compare with the SFG main sequence (MS). We create [Oiii ]λ 5008/Hβ versus [Neiii ]λ 3870/[Oii ]λ 3728 line ratio diagrams. The line ratios appear to correlate with sSFR, and our results suggest that sSFR is the parameter that governs ionization conditions rather than SFR or a galaxy’s distance from the MS. These measurements reveal a rich diversity of ISM conditions and physical galaxy properties throughout cosmic time.