skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Energetics of topographically designed Smectic-A oily streaks
(a) 3D visualization of a SmA divot measured by optical profilometry. (b) Polarized optical microscopy image showing the OS pattern between crossed polarizers, overlaid by the parameters used in our model. (c) Side view sketch showing the different parameters in our model.  more » « less
Award ID(s):
1901797
PAR ID:
10512244
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Royal Society of Chemistry
Date Published:
Journal Name:
Soft Matter
Volume:
19
Issue:
20
ISSN:
1744-683X
Page Range / eLocation ID:
3733 to 3738
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A visual experiment using a beam-splitter-based optical see-through augmented reality (OST-AR) setup tested the effect of the size and alignment of AR overlays with a brightness-matching task using physical cubes. Results indicate that more luminance is required when AR overlays are oversized with respect to the cubes, showing that observers discount the AR overlay to a greater extent when it is more obviously a transparent layer. This is not explained by conventional color appearance modeling but supports an AR-specific model based on foreground-background discounting. The findings and model will help determine parameters for creating convincing AR manipulation of real-world objects. 
    more » « less
  2. Integrated optical phased arrays (OPAs) have enabled cutting-edge applications where optical beam steering can benefit from chip-scale integration. However, the majority of integrated OPA demonstrations to date have been limited to showing far-field beam forming and steering. There are, however, many emerging applications of integrated photonics where emission of focused light from a chip is desirable, such as in integrated optical tweezers for biophotonics, chip-based 3D printers, and trapped-ion quantum systems. To address this need, we have recently demonstrated the first near-field-focusing integrated OPAs; however, this preliminary demonstration was limited to emission at only one focal plane above the chip. In this paper, we show the first, to the best of our knowledge, spiral integrated OPAs, enabling emission of focusing beams with tunable variable focal heights for the first time. In the process, we develop the theory, explore the design parameters, and propose feed-structure architectures for such OPAs. Finally, we experimentally demonstrate an example spiral integrated OPA system fabricated in a standard silicon-photonics process, showing wavelength-tunable variable-focal-height focusing emission. This work introduces a first-of-its-kind integrated OPA architecture not previously explored or demonstrated in literature and, as such, enables new functionality for emerging applications of OPAs that require focusing operation. 
    more » « less
  3. This article extends recent work in magnetic manipulation of conductive, nonmagnetic objects using rotating magnetic dipole fields. Eddy-current-based manipulation provides a contact-free way to manipulate metallic objects. We are particularly motivated by the large amount of aluminum in space debris. We previously demonstrated dexterous manipulation of solid spheres with all object parameters known a priori. This work expands the previous model, which contained three discrete modes, to a continuous model that covers all possible relative positions of the manipulated spherical object with respect to the magnetic field source. We further leverage this new model to examine manipulation of spherical objects with unknown physical parameters by applying techniques from the online-optimization and adaptive-control literature. Our experimental results validate our new dynamics model, showing that we get improved performance compared to the previously proposed model, while also solving a simpler optimization problem for control. We further demonstrate the first physical magnetic manipulation of aluminum spheres, as previous controllers were only physically validated on copper spheres. We show that our adaptive control framework can quickly acquire useful object parameters when weakly initialized. Finally, we demonstrate that the spherical-object model can be used as an approximate model for adaptive control of nonspherical objects by performing magnetic manipulation of a variety of objects for which a spherical model is not an obvious approximation. 
    more » « less
  4. Electron paramagnetic resonance of Cr3+ ions in β-Ga2O3 is investigated using terahertz spectroscopic ellipsometry under magnetic field sweeping, a technique that enables the polarization resolving capabilities of ellipsometry for magnetic resonance measurements. We employed a single-crystal chromium-doped β-Ga2O3 sample, grown by the Czochralski method, and performed ellipsometry measurements at magnetic field strengths ranging from 2 to 8 T, at frequencies from 82 to 125 and 190 to 230 GHz, and at a temperature of 15 K. Analysis of the frequency-field diagrams derived from all Mueller matrix elements allowed us to differentiate between the effects of electron spin Zeeman splitting and zero-field splitting and to accurately determine the anisotropic Zeeman splitting g-tensor and the zero-field splitting parameters. Our results confirm that Cr3+ ions predominantly substitute into octahedral gallium sites. Line shape analysis of Mueller matrix element spectra using the Bloch–Brillouin model provides the spin volume concentration of Cr3+ sites, showing very good agreement with results from chemical analysis by inductively coupled plasma-optical emission spectroscopy and suggesting minimal occupation of sites with inactive electron paramagnetic resonance. This study enhances our understanding of the magnetic and electronic properties of chromium-doped β-Ga2O3 and demonstrates the effectiveness of high-frequency/high-field electron paramagnetic resonance generalized spectroscopic ellipsometry for characterizing defects in ultrawide-bandgap semiconductors. 
    more » « less
  5. ABSTRACT The scarce optical variability studies in spectrally classified Type 2 active galactic nuclei (AGNs) have led to the discovery of anomalous objects that are incompatible with the simplest unified models (UMs). This paper focuses on the exploration of different variability features that allow to distinguish between obscured, Type 2 AGNs and the variable, unobscured Type 1s. We analyse systematically the Zwicky Transient Facility, 2.5-yr-long light curves of ∼15 000 AGNs from the Sloan Digital Sky Survey Data Release 16, which are generally considered Type 2s due to the absence of strong broad emission lines (BELs). Consistent with the expectations from the UM, the variability features are distributed differently for distinct populations, with spectrally classified weak Type 1s showing one order of magnitude larger variances than the Type 2s. We find that the parameters given by the damped random walk model lead to broader H α equivalent width for objects with τg > 16 d and long-term structure function SF∞, g > 0.07 mag. By limiting the variability features, we find that ∼11 per cent of Type 2 sources show evidence for optical variations. A detailed spectral analysis of the most variable sources (∼1 per cent of the Type 2 sample) leads to the discovery of misclassified Type 1s with weak BELs and changing-state candidates. This work presents one of the largest systematic investigations of Type 2 AGN optical variability to date, in preparation for future large photometric surveys. 
    more » « less