How evolution at the cellular level potentiates change at the macroevolutionary level is a major question in evolutionary biology. With >66,000 described species, rove beetles (Staphylinidae) comprise the largest metazoan family. Their exceptional radiation has been coupled to pervasive biosynthetic innovation whereby numerous lineages bear defensive glands with diverse chemistries. Here, we combine comparative genomic and single-cell transcriptomic data from across the largest rove beetle clade, Aleocharinae. We retrace the functional evolution of two novel secretory cell types that together comprise the tergal gland—a putative catalyst behind Aleocharinae’s megadiversity. We identify key genomic contingencies that were critical to the assembly of each cell type and their organ-level partnership in manufacturing the beetle’s defensive secretion. This process hinged on evolving a mechanism for regulated production of noxious benzoquinones that appears convergent with plant toxin release systems, and synthesis of an effective benzoquinone solvent that weaponized the total secretion. We show that this cooperative biosynthetic system arose at the Jurassic-Cretaceous boundary, and that following its establishment, both cell types underwent ∼150 million years of stasis, their chemistry and core molecular architecture maintained almost clade-wide as Aleocharinae radiated globally into tens of thousands of lineages. Despite this deep conservation, we show that the two cell types have acted as substrates for the emergence of adaptive, biochemical novelties—most dramatically in symbiotic lineages that have infiltrated social insect colonies and produce host behavior-manipulating secretions. Our findings uncover genomic and cell type evolutionary processes underlying the origin, functional conservation and evolvability of a chemical innovation in beetles.
more »
« less
Comparative anatomy of venom glands suggests a role of maternal secretions in gall induction by cynipid wasps (Hymenoptera: Cynipidae)
Abstract Many herbivorous insect species are capable of hijacking plant development to induce novel plant organs called galls. In most groups of galling insects, the insect organs and molecular signals involved in gall induction are poorly understood. We focused on gall wasps (Hymenoptera:Cynipidae), the second largest clade of gall inducers (~1,400 spp.), for which the developmental stages and organs responsible for gall development are unclear. We investigated the female metasomal anatomy of 69 gall-inducing and 29 non-gall-inducing species across each of the major lineages of Cynipoidea, to test relationships between this lifestyle and the relative size of secretory organs. We confirmed that the venom apparatus in gall-inducing species is greatly expanded, although gall-inducing lineages vary in the relative size of these glands. Among these gallers, we measured the largest venom gland apparatus relative to body size ever recorded in insects. Non-galling inquiline species are accompanied by a reduction of this apparatus. Comparative microscopic analysis of venom glands suggests varying venom gland content across the lineages. Some oak gallers also had enlarged accessory glands, a lipid-rich organ whose function remains unclear, and which has not been previously studied in relation to gall formation. Together, the massive expansion of secretory organs specifically in gall-inducing species suggests a role of these secretions in the process of gall formation, and the variance in size of venom glands, accessory glands, and the contents of these glands among gallers, suggests that gall formation across this clade is likely to employ a diversity of molecular strategies.
more »
« less
- Award ID(s):
- 1856626
- PAR ID:
- 10512277
- Editor(s):
- Bond, Jason
- Publisher / Repository:
- Entomological Society of America
- Date Published:
- Journal Name:
- Insect Systematics and Diversity
- Volume:
- 7
- Issue:
- 5
- ISSN:
- 2399-3421
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Sime, Karen (Ed.)Abstract Insect-induced galls are novel structures that serve as habitat to whole communities of associate arthropods that include predators, parasitoids, and inquilines. Galling insects are generally under-described, but their associate communities, which can include many specialist organisms, are virtually unknown, particularly in the southwest United States. Aciurina bigeloviae (Cockerell 1890) and Aciurina trixa Curran 1932 (Diptera: Tephritidae) are unusually common and abundant galling flies in New Mexico. The 2 species are sister and occur in sympatric areas but have distinct gall morphologies. We reared all arthropods from 3,800 galls from 14 sites in the northern and central regions of the state and as a result characterized the complete communities of both species, including barcode sequences and eclosion phenology. We also investigate interactions of A. trixa galls with the abundant inquiline weevil Anthonomus cycliferus Fall 1913 (Coleoptera: Circulionidae) and find no measurable effect of inquiline abundance on the size of the emerged adult fly or gall. The total species count is 24 and includes 6 guilds; both A. bigeloviae and A. trixa communities are richer and more complex than other documented Tephritidae–Asteraceae galling systems. This study highlights the potential of galling insects as ecosystem engineers to maintain large, rich, and multi-trophic communities.more » « less
-
ABSTRACT The venom glands of reptiles, particularly those of front-fanged advanced snakes, must satisfy conflicting biological demands: rapid synthesis of potentially labile and highly toxic proteins, storage in the gland lumen for long periods, stabilization of the stored secretions, immediate activation of toxins upon deployment and protection of the animal from the toxic effects of its own venom. This dynamic system could serve as a model for the study of a variety of different phenomena involving exocrine gland activation, protein synthesis, stabilization of protein products and secretory mechanisms. However, these studies have been hampered by a lack of a long-term model that can be propagated in the lab (as opposed to whole-animal studies). Numerous attempts have been made to extend the lifetime of venom gland secretory cells, but only recently has an organoid model been shown to have the requisite qualities of recapitulation of the native system, self-propagation and long-term viability (>1 year). A tractable model is now available for myriad cell- and molecular-level studies of venom glands, protein synthesis and secretion. However, venom glands of reptiles are not identical, and many differ very extensively in overall architecture, microanatomy and protein products produced. This Review summarizes the similarities among and differences between venom glands of helodermatid lizards and of rear-fanged and front-fanged snakes, highlighting those areas that are well understood and identifying areas where future studies can fill in significant gaps in knowledge of these ancient, yet fascinating systems.more » « less
-
null (Ed.)Abstract Despite the extensive body of research on snake venom, many facets of snake venom systems, such as the physiology and regulation of the venom gland itself, remain virtually unstudied. Here, we use time series gene expression analyses of the rattlesnake venom gland in comparison with several non-venom tissues to characterize physiological and cellular processes associated with venom production and to highlight key distinctions of venom gland cellular and physiological function. We find consistent evidence for activation of stress response pathways in the venom gland, suggesting that mitigation of cellular stress is a crucial component of venom production. Additionally, we demonstrate evidence for an unappreciated degree of cellular and secretory activity in the steady state venom gland relative to other secretory tissues and identify vacuolar ATPases as the likely mechanisms driving acidification of the venom gland lumen during venom production and storage.more » « less
-
null (Ed.)Abstract Background Parasitoidism, a specialized life strategy in which a parasite eventually kills its host, is frequently found within the insect order Hymenoptera (wasps, ants and bees). A parasitoid lifestyle is one of two dominant life strategies within the hymenopteran superfamily Cynipoidea, with the other being an unusual plant-feeding behavior known as galling. Less commonly, cynipoid wasps exhibit inquilinism, a strategy where some species have adapted to usurp other species’ galls instead of inducing their own. Using a phylogenomic data set of ultraconserved elements from nearly all lineages of Cynipoidea, we here generate a robust phylogenetic framework and timescale to understand cynipoid systematics and the evolution of these life histories. Results Our reconstructed evolutionary history for Cynipoidea differs considerably from previous hypotheses. Rooting our analyses with non-cynipoid outgroups, the Paraulacini, a group of inquilines, emerged as sister-group to the rest of Cynipoidea, rendering the gall wasp family Cynipidae paraphyletic. The families Ibaliidae and Liopteridae, long considered archaic and early-branching parasitoid lineages, were found nested well within the Cynipoidea as sister-group to the parasitoid Figitidae. Cynipoidea originated in the early Jurassic around 190 Ma. Either inquilinism or parasitoidism is suggested as the ancestral and dominant strategy throughout the early evolution of cynipoids, depending on whether a simple (three states: parasitoidism, inquilinism and galling) or more complex (seven states: parasitoidism, inquilinism and galling split by host use) model is employed. Conclusions Our study has significant impact on understanding cynipoid evolution and highlights the importance of adequate outgroup sampling. We discuss the evolutionary timescale of the superfamily in relation to their insect hosts and host plants, and outline how phytophagous galling behavior may have evolved from entomophagous, parasitoid cynipoids. Our study has established the framework for further physiological and comparative genomic work between gall-making, inquiline and parasitoid lineages, which could also have significant implications for the evolution of diverse life histories in other Hymenoptera.more » « less
An official website of the United States government

