Abstract Mineral scaling represents a major constraint that limits the efficiency of membrane desalination, which is becoming increasingly important for achieving sustainable water supplies in the context of a changing climate. Different mineral scales can be formed via distinct mechanisms that lead to a significant variation of scaling behaviors and mitigation strategies. In this article, we present a comprehensive review that thoroughly compares gypsum scaling and silica scaling, which are two common scaling types formed via crystallization and polymerization respectively, in membrane desalination. We show that the differences between scale formation mechanisms greatly affect the thermodynamics, kinetics, and mineral morphology of gypsum scaling and silica scaling. Then we review the literatures on the distinct behaviors of gypsum scaling and silica scaling during various membrane desalination processes, examining their varied damaging effects on desalination efficiency. We further scrutinize the different interactions of gypsum and silica with organic foulants, which result in contrasting consequences of combined scaling and fouling. In addition, the distinctive mitigation strategies tailored to controlling gypsum scaling and silica scaling, including scaling-resistant membrane materials, antiscalants, and pretreatment, are discussed. We conclude this article with the research needs of attaining a better understanding of different mineral scaling types, aiming to inspire researchers to take scale formation mechanism into consideration when developing more effective approaches of scaling control in membrane desalination.
more »
« less
A comprehensive study on combined organic fouling and gypsum scaling in reverse osmosis: Decoupling surface and bulk phenomena
Reverse osmosis (RO), as an energy efficient desalination technology that is critical to mitigate water scarcity, encounters feedwater containing both organic foulants and inorganic scalants. However, comparing with extensive studies on individual fouling or scaling, our knowledge of the behavior and mechanisms associated with combined organic fouling and mineral scaling is still lacking. Due to the potential occurrence of mineral formation in both bulk solution and on the membrane surface, a complete, mechanistic understanding of combined fouling and scaling requires decoupling of surface and bulk phenomena. Herein, our study employed a comprehensive investigation to delve into the intricate interplay of gypsum scaling and organic fouling in RO process. Our systematic approach is accomplished through three sets of experiments that include static experiments and two types of dynamic experiments (i.e., (1) combined fouling and scaling, and (2) gypsum scaling on foulant-conditioned membranes). A variety of model foulants including humic acid, alginate, bovine serum albumin (BSA), and lysozyme were used to investigate the effects of foulant type. Our results demonstrate that the behavior of combined organic fouling and gypsum scaling aligns more with that of gypsum scaling on foulant-conditioned membranes rather than static experiments where bulk nucleation occurs, indicating the predominance of surface nucleation in RO. BSA exhibited a remarkable hindering effect on gypsum scaling, whereas other foulants displayed an additive effect. The lack of scaling mitigation by lysozyme suggests that molecular properties of protein must play a role in regulating the behavior of combined fouling and scaling. Results from multiple characterization techniques reveal the foulant-scalant interactions by delineating the morphological and chemical features of the fouling/scaling layers. Our study not only elucidates the mechanisms of combined organic fouling and gypsum scaling but also sheds light on potential strategies for membrane scaling control in RO desalination.
more »
« less
- PAR ID:
- 10512468
- Publisher / Repository:
- Elsevier B.V.
- Date Published:
- Journal Name:
- Journal of Membrane Science
- Volume:
- 694
- Issue:
- C
- ISSN:
- 0376-7388
- Page Range / eLocation ID:
- 122399
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
To unravel fouling and defouling mechanisms of protein, saccharides and natural organic matters (NOM) on polymeric membrane during filtration, this study investigated filtration characteristics on polyvinyl chloride (PVC) ultrafiltration membranes with bovine serum albumin, dextran, humic acid as model foulants. Membrane fouling and defouling performances were analyzed through monitoring the flux decline during filtration and flux recovery during physical backwash. Physico-chemical properties (e.g., hydrophobicity and surface charge) of PVC membrane and foulants were characterized, which were used in the extended Derjaguin–Landau–Verwey–Overbeek (EDLVO) theory to calculate the interaction energies between membrane foulant and foulant-foulant. The results showed that at the later filtration stages the fouling rate was strongly correlated with the deposition rate, which was determined by the interaction energy profile calculated by EDLVO. Moreover, the adhesion forces of membrane–foulant and foulant–foulant were further measured by atomic force microscopy (AFM) with modified colloidal probes. A positive correlation (R2 =0.845) between particle detachment rate (determined by adhesion force) and defouling rate was developed for BSA and HA foulants that led to cake layer formation. By contrast, dextran defouling rate was off this correlation as dextran partially clogged membrane pores due to its smaller size.more » « less
-
Membrane fouling is a major issue in many membrane applications. There are numerous methods used in attempt to mitigate membrane fouling, with one method being membrane surface patterning. However, it is still unclear how the ratio of foulant size to pattern size affects membrane fouling. In this study, we investigated constant foulant size while varying the pattern size on the membrane surface to be smaller than (300-nm), equal to (10-μm), and larger than (50-μm) the foulant (10-μm) on polyamide nanofiltration membranes. These membranes were compared to a commercial nanofiltration membrane and a control flat synthesized membrane. The membranes were tested with water, 2000 ppm Na2SO4, and three cycles of a n-dodecane (as oil) brine solution in a dead-end cell to assess the fouling resistance and flux recovery ability of each polyamide membrane type. From the fouling experiments, it was determined that none of the pattern sizes significantly affect the flux recovery ratio, but smaller than and larger than patterns decreased the fouling rate on the polyamide membranes by a small margin.more » « less
-
Silica scaling is a major type of mineral scaling that significantly constrains the performance and efficiency of membrane desalination. While antiscalants have been commonly used to control mineral scaling formed via crystallization, there is a lack of antiscalants for silica scaling due to its unique formation mechanism of polymerization. In this study, we performed a systematic study that investigated and compared antiscalants with different functional groups and molecular weights for mitigating silica scaling in membrane distillation (MD) and reverse osmosis (RO). The efficiencies of these antiscalants were tested in both static experiments (for hindering silicic acid polymerization) as well as crossflow, dynamic MD and RO experiments (for reducing water flux decline). Our results show that antiscalants enriched with strong H-accepters and H-donors were both able to hinder silicic acid polymerization efficiently in static experiments, with their antiscaling performance being a function of both molecular functionality and weight. Although poly(ethylene glycol) (PEG) with abundant H-accepters exhibited high antiscaling efficiencies during static experiments, it displayed limited performance of mitigating silica scaling during MD and RO. Poly (ethylene glycol) diamine (PEGD), which has a PEG backbone but is terminated by two amino groups, was efficient to both hinder silicic acid polymerization and reduce water flux decline in MD and RO. Antiscalants enriched with H-donors, such as poly(ethylenimine) (PEI) and poly(amidoamine) (PAMAM), were effective of extending the water recovery of MD but conversely facilitated water flux decline of RO in the presence of supersaturated silica. Further analyses of silica scales formed on the membrane surfaces confirmed that the antiscalants interacted with silica via hydrogen bonding and showed that the presence of antiscalants governed the silica morphology. Our work indicates that discrepancy in antiscalant efficiency exists between static experiments and dynamic membrane filtration as well as between different membrane processes associated with silica scaling, providing valuable insights on the design principle and mechanisms of antiscalants tailored to silica scaling.more » « less
-
Zwitterionic polymers have proven to be a promising non-fouling material that can be applied in the design of selective layers of thin film composite (TFC) membranes. Extending the permeability and usage of TFC membranes have attracted increasing interest in membrane-based desalination processes since water-flux reduction associated with biofouling persist nowadays as a common challenge. By virtue of its strong hydration, this polymer category is very useful to counteract biofouling in marine and biomedical systems, but the benefits from their application in membrane technology are still emerging. The efficacy of the non-fouling property as a function of the polymer’s molecular weight remains unknown. In pursuit of that vision, this study fosters new scientific insights via probing different molecular weights of poly(carboxybetain methacrylate) (PCBMA) coated on the surface as a selective layer for the prepared TFC membranes. The coated zwitterionic membranes (zM) exhibited excellent performance to prevent water flux decay in a bench scale forward osmosis system. The prepared zM membranes revealed enhanced hydrophilic properties and retained its operational water-flux when compared to the control. Our results suggest that using an intermediate size molecular weight (PCBMA Mn 50,000) will result in the best operational performance. The intermediate size resulted in the lowest flux decline rate (Rt) of 0.01±0.001 (zM-50) when compared to the unmodified control membrane 0.56 ± 0.071 (M0) after using a model BSA foulant solution. Furthermore, all coated membranes exhibited similar trends in the observed reverse salt flux profiles as well. The constructed zM membranes will serve as a model to develop further selective layers in the construction of TFC membranes.more » « less
An official website of the United States government

