skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, February 13 until 2:00 AM ET on Friday, February 14 due to maintenance. We apologize for the inconvenience.


This content will become publicly available on February 1, 2026

Title: Pattern size relative to oil droplet size effect on oil fouling in nanofiltration
Membrane fouling is a major issue in many membrane applications. There are numerous methods used in attempt to mitigate membrane fouling, with one method being membrane surface patterning. However, it is still unclear how the ratio of foulant size to pattern size affects membrane fouling. In this study, we investigated constant foulant size while varying the pattern size on the membrane surface to be smaller than (300-nm), equal to (10-μm), and larger than (50-μm) the foulant (10-μm) on polyamide nanofiltration membranes. These membranes were compared to a commercial nanofiltration membrane and a control flat synthesized membrane. The membranes were tested with water, 2000 ppm Na2SO4, and three cycles of a n-dodecane (as oil) brine solution in a dead-end cell to assess the fouling resistance and flux recovery ability of each polyamide membrane type. From the fouling experiments, it was determined that none of the pattern sizes significantly affect the flux recovery ratio, but smaller than and larger than patterns decreased the fouling rate on the polyamide membranes by a small margin.  more » « less
Award ID(s):
1941700
PAR ID:
10553229
Author(s) / Creator(s):
; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Journal of Membrane Science
Volume:
715
Issue:
C
ISSN:
0376-7388
Page Range / eLocation ID:
123457
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. To unravel fouling and defouling mechanisms of protein, saccharides and natural organic matters (NOM) on polymeric membrane during filtration, this study investigated filtration characteristics on polyvinyl chloride (PVC) ultrafiltration membranes with bovine serum albumin, dextran, humic acid as model foulants. Membrane fouling and defouling performances were analyzed through monitoring the flux decline during filtration and flux recovery during physical backwash. Physico-chemical properties (e.g., hydrophobicity and surface charge) of PVC membrane and foulants were characterized, which were used in the extended Derjaguin–Landau–Verwey–Overbeek (EDLVO) theory to calculate the interaction energies between membrane foulant and foulant-foulant. The results showed that at the later filtration stages the fouling rate was strongly correlated with the deposition rate, which was determined by the interaction energy profile calculated by EDLVO. Moreover, the adhesion forces of membrane–foulant and foulant–foulant were further measured by atomic force microscopy (AFM) with modified colloidal probes. A positive correlation (R2 =0.845) between particle detachment rate (determined by adhesion force) and defouling rate was developed for BSA and HA foulants that led to cake layer formation. By contrast, dextran defouling rate was off this correlation as dextran partially clogged membrane pores due to its smaller size. 
    more » « less
  2. In this study, hydrophilic silica nanoparticles (Si NPs) were used to modify α-alumina tubular membranes to improve their performance in terms of flux, oil rejection, and anti-fouling properties. Our work focuses on enhancing membrane performance, particularly for difficult applications such as produced water treatment. The prepared membranes were applied for oil-in-water emulsion treatment. After coating hydrophilic Si NPs, the oil contact angle improved from 133.8° to 171.4°. To prevent Si NPs from leaching off the surface of α-alumina tubular membranes, polyvinyl alcohol was used to coat the membranes as a pre-treatment step before Si NP modification. After coating the membrane with Si NPs, the roughness of the membrane surface decreased, likely leading to less fouling. After coating Si NPs, Total Organic Carbon rejection increased from 93.1% for pristine α-alumina tubular membranes to 97.7% for silica-modified membranes because of hydrophilic improvements of the modified membranes. The Si NP coating improved the anti-fouling property of membranes with the flux recovery ratio increasing from 71.3% for pristine α-alumina tubular membranes to 85.9% for silica-modified membranes. Scanning Electron Microscopy, Energy- dispersive X-ray spectroscopy, oil contact angle, and Atomic Force Microscopy characterization tests were done. The tests showed successful Si NPs impregnation and altered wettability. 
    more » « less
  3. This contribution describes a method to reduce bacteria fouling on ultrafiltration membranes by applying nanoscale line-and-groove patterns on the surface of membranes. Nanoimprint lithography was used to pattern the polysulfone membrane surfaces with a peak height of 66.2 nm and a period of 594.0 nm. Surface characterization using scanning electron microscopy and atomic force microscopy confirmed that patterning was successful over the entire stamped area of the membrane. Water permeance tests determined that the permeance decreased by 36% upon patterning. Static batch experiments that explored the attachment of Escherichia coli K12 cells to the membranes demonstrated that the patterned membranes had a 60% lower attachment of microbes than the nonpatterned membranes. Dynamic bacteria fouling experiments using E. coli cells showed that the patterned membranes had a higher flux recovery ratio (88%) compared to the nonpatterned membranes (70%). On the basis of these studies, we suggest that patterning membranes can reduce the initial attachments of microbial cells and that different pattern sizes and shapes should be investigated to gain a fundamental understanding of their influence on bacteria fouling. 
    more » « less
  4. Abstract

    Nanoparticle (NP) additions can substantially improve the performance of reverse osmosis and nanofiltration polyamide (PA) membranes. However, the relative impacts of leading additives are poorly understood. In this study, we compare the effects ofTiO2andSiO2NPs as nanofillers in PA membranes with respect to permeate flux and the rejection of organic matter (OM) and salts. Thin‐film nanocomposite (TFN) PA membranes were fabricated using similarly sizedTiO215 nm andSiO2(10 – 20 nm)NPs, introduced at four different NP concentrations (0.01, 0.05, 0.2, and 0.5% w/v). Compared with PA membranes fabricated without NPs, membranes fabricated with nanofillers improved membranes hydrophilicity, membrane porosity, and consequently the permeability. Permeability was increased by 24 and 58% with the addition ofTiO2andSiO2, respectively. Rejection performance and fouling behavior of the membranes were examined with salt (MgSO4andNaCl) and OM (humic acid [HA] and tannic acid [TA]). The addition ofTiO2andSiO2nanofillers to the PA membranes improved the permeability of these membranes and also increased the rejection ofMgSO4, especially for TiO2membranes. The addition ofTiO2andSiO2to the membranes exhibited a higher flux and lower flux decline ratio than the control membrane in OM solution filtration. TFN membranes' HA and TA rejections were at least 77 and 71%, respectively. The surface change properties of NPs appear to play a dominant role in determining their effects as nanofillers in the composite membrane matrix through a balance of changes produced in membrane pore size and membrane hydrophilicity.

     
    more » « less
  5. Bioinspired membranes offer an alternative approach to improving the fouling resistance of commercial membranes for oil separations. Here, two perfluoropolyether oils, a lower viscosity Krytox 103 (K103) and a higher viscosity Krytox 107 (K107), were infused into commercial polyvinylidene fluoride (PVDF) ultrafiltration membranes to mimic the Nepenthes pitcher plant. The transmembrane pressure required to perform long-term oil permeance tests was optimized by testing the liquid-infused membranes at different applied pressures. Crystal violet staining and variable pressure scanning electron microscopy qualitatively suggest that the oil layer remained on the membranes after the oil separation experiments were conducted. Over 5 cycles, K103- and K107- liquid-infused membranes exhibited a consistent permeance of ∼ 30000 L m-2h−1 bar−1 at 1.0 bar and ∼ 14500 L m-2h−1 bar−1 at 0.5 bar, respectively. The steady performance further supports a long-lasting oil layer persists on the membrane surface and inside membrane’s pores. Next, experiments were conducted to determine the stability of the Krytox oil post accelerated cleaning tests using bleach. No structural changes to the Krytox oils were detected by thermogravimetric analysis or nuclear magnetic resonance spectroscopy. Dynamic fouling experiments using Escherichia coli K12 revealed that the liquid-infused membranes had higher flux recovery ratios (∼95 %) than the bare PVDF control membranes (∼55 %). Our results demonstrate that liquid-infused membranes exhibit chlorine stability and superior fouling resistance, presenting a promising bioinspired membrane that can be used in pressure-driven oil separation applications. 
    more » « less