Convectively coupled equatorial waves are a significant source of atmospheric variability in the tropics. Current numerical models continue to struggle in simulating the coupled diabatic heating fields that are responsible for the development and maintenance of these waves. This study investigates how the diabatic fields associated with Mixed Rossby–Gravity waves (MRGs) are represented in four reanalysis products by using a unique observational dataset from the TRMM‐KWAJEX (Tropical Rainfall Measuring Mission‐Kwajalein Experiment) field campaign. These reanalyses include ERA5, Japanese 55‐year Reanalysis (JRA‐55), Climate Forecast System Reanalysis (CFSR), and Modern‐Era Retrospective Analysis for Research and Applications (MERRA). We found that all four reanalyses captured the MRG structures in winds and temperature, and to a lesser degree in the humidity field except in the boundary layer. However, only the ERA5 and MERRA reanalyses captured the gradual rise and succession of the diabatic heating from boundary layer turbulence, shallow convection, cumulus congestus, and deep convection within the waves. ERA5 is the only product that also captured the gradual rise of the subgrid‐scale vertical transport of moist static energy. All reanalysis products underestimated the diabatic heating from cumulus congestus. Results provide observational basis on what aspects of MRG can be trusted and what cannot in the reanalysis products.
This content will become publicly available on April 16, 2025
Tropical easterly waves (TEWs) are a recurrent mode of low‐latitude weather that are often convectively coupled and impact precipitation extremes. Previous work has examined the development of TEWs and their associated precipitation for individual seasons or regional domains, but no studies exist that document the importance of TEW precipitation globally. This study quantifies the precipitation associated with TEWs across the entire tropics using satellite (Integrated Multi‐satellitE Retrievals for the Global Precipitation Measurement [IMERG]) and reanalysis (Modern‐Era Retrospective analysis for Research and Applications, Version 2 [MERRA‐2]) data. Traditional space‐time filtering of precipitation reveals a mostly similar climatological power distribution for westward traveling, synoptic period disturbances corresponding to TEWs within all data sets. Using objective tracking, we find that areas with maximum TEW frequency such as the North Atlantic, Equatorial Pacific, and Indian Ocean have the highest accumulation of TEW‐associated precipitation. TEWs account for at most 30% of total annual precipitation in regions where they commonly occur and 1%–5% over much of the tropics. Vertically collocated storms, where the 850 and 700 hPa tracks correspond with each other, have higher conditional rain rates and indicate that waves with vertical development produce stronger and more organized convection. We find similar regional patterns using MERRA‐2 precipitation and latent heating, although the importance and contribution of TEWs to the background are reduced compared to IMERG. While the broad pattern of TEW associated precipitation in MERRA‐2 is like observations, the underestimation of rainfall contributions from TEWs, coupled with occasional false alarms in reanalysis data, suggests that MERRA‐2 does not capture organized convection within TEWs correctly.
more » « less- Award ID(s):
- 1944177
- PAR ID:
- 10512515
- Publisher / Repository:
- AGU
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Atmospheres
- Volume:
- 129
- Issue:
- 7
- ISSN:
- 2169-897X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Organized deep convective activity has been routinely monitored by satellite precipitation radar from the Tropical Rainfall Measuring Mission (TRMM) and Global Precipitation Mission (GPM). Organized deep convective activity is found to increase not only with sea surface temperature (SST) above 27°C, but also with low-level wind shear. Precipitation shows a similar increasing relationship with both SST and low-level wind shear, except for the highest low-level wind shear. These observations suggest that the threshold for organized deep convection and precipitation in the tropics should consider not only SST, but also vertical wind shear. The longwave cloud radiative feedback, measured as the tropospheric longwave cloud radiative heating per amount of precipitation, is found to generally increase with stronger organized deep convective activity as SST and low-level wind shear increase. Organized deep convective activity, the longwave cloud radiative feedback, and cirrus ice cloud cover per amount of precipitation also appear to be controlled more strongly by SST than by the deviation of SST from its tropical mean. This study hints at the importance of non-thermodynamic factors such as vertical wind shear for impacting tropical convective structure, cloud properties, and associated radiative energy budget of the tropics.
Significance Statement This study uses tropical satellite observations to demonstrate that vertical wind shear affects the relationship between sea surface temperature and tropical organized deep convection and precipitation. Shear also affects associated cloud properties and how clouds affect the flow of radiation in the atmosphere. Although how vertical wind shear affects convective organization has long been studied in the mesoscale community, the study attempts to apply mesoscale theory to explain the large-scale mean organization of tropical deep convection, cloud properties, and radiative feedbacks. The study also provides a quantitative observational baseline of how vertical wind shear modifies cloud radiative effects and convective organization, which can be compared to numerical simulations.
-
null (Ed.)Abstract Many existing models that predict landslide hazards utilize ground-based sources of precipitation data. In locations where ground-based precipitation observations are limited (i.e., a vast majority of the globe), or for landslide hazard models that assess regional or global domains, satellite multisensor precipitation products offer a promising near-real-time alternative to ground-based data. NASA’s global Landslide Hazard Assessment for Situational Awareness (LHASA) model uses the Integrated Multisatellite Retrievals for Global Precipitation Measurement (IMERG) product to issue hazard “nowcasts” in near–real time for areas that are currently at risk for landsliding. Satellite-based precipitation estimates, however, can contain considerable systematic bias and random error, especially over mountainous terrain and during extreme rainfall events. This study combines a precipitation error modeling framework with a probabilistic adaptation of LHASA. Compared with the routine version of LHASA, this probabilistic version correctly predicts more of the observed landslides in the study region with fewer false alarms by high hazard nowcasts. This study demonstrates that improvements in landslide hazard prediction can be achieved regardless of whether the IMERG error model is trained using abundant ground-based precipitation observations or using far fewer and more scattered observations, suggesting that the approach is viable in data-limited regions. Results emphasize the importance of accounting for both random error and systematic satellite precipitation bias. The approach provides an example of how environmental prediction models can incorporate satellite precipitation uncertainty. Other applications such as flood and drought monitoring and forecasting could likely benefit from consideration of precipitation uncertainty.more » « less
-
Abstract Tropical weather phenomena—including tropical cyclones (TCs) and equatorial waves—are influenced by planetary‐to‐convective‐scale processes; yet, existing data sets and tools can only capture a subset of those processes. This study introduces a convection‐permitting aquaplanet simulation that can be used as a laboratory to study TCs, equatorial waves, and their interactions. The simulation was produced with the Model for Prediction Across Scales‐Atmosphere (MPAS‐A) using a variable resolution mesh with convection‐permitting resolution (i.e., 3‐km cell spacing) between 10°S and 30°N. The underlying sea‐surface temperature is given by a zonally symmetric profile with a peak at 10°N, which allows for the formation of TCs. A comparison between the simulation and satellite, reanalysis, and airborne dropsonde data is presented to determine the realism of the simulated phenomena. The simulation captures a realistic TC intensity distribution, including major hurricanes, but their lifetime maximum intensities may be limited by the stronger vertical wind shear in the simulation compared to the observed tropical Pacific region. The simulation also captures convectively coupled equatorial waves, including Kelvin waves and easterly waves. Despite the idealization of the aquaplanet setup, the simulated three‐dimensional structure of both groups of waves is consistent with their observed structure as deduced from satellite and reanalysis data. Easterly waves, however, have peak rotation and meridional winds at a slightly higher altitude than in the reanalysis. Future studies may use this simulation to understand how convectively coupled equatorial waves influence the multi‐scale processes leading to tropical cyclogenesis.
-
Abstract This study evaluates the tropical cyclone (TC) activity in two high‐resolution data sets—MERRA‐2 Reanalysis (Modern‐Era Retrospective Analysis for Research and Applications, Version 2) and MERRA‐2 AMIP (Atmospheric Model Intercomparison Project). These data sets use the same atmospheric model, the Goddard Earth Observing System Model, Version 5 (GEOS‐5) during the same period. However, while MERRA‐2 AMIP is a free‐running atmospheric simulation forced only with sea surface temperature (SST), MERRA‐2 Reanalysis uses an advanced data assimilation system to include a large variety of data sets. Thus, we analyze (1) the sensitivity of TC activity to the model forcing, (2) how well the TCs in both data sets replicate observed TC characteristics, (3) the sensitivity of these results to tracking schemes and thresholds. Standard diagnostics such as the number of tropical cyclones and their intensity distribution are very similar in the AMIP model and the reanalysis. TCs in both data sets are weaker than observed, as is typical for the spatial resolution of these global models. Overall, the use of data assimilation in the MERRA‐2 Reanalysis does not lead to a significantly better TC climatology than in AMIP. Furthermore, comparison of the MERRA‐2 Reanalysis to two other reanalysis data sets shows that MERRA‐2 generates fewer, but more intense TCs, than those reanalysis products.