Abstract Urbanization increases stormwater runoff into streams, resulting in channel erosion, and increases in sediment and nutrient delivery to receiving water bodies. Stream restoration is widely used as a Best Management Practice to stabilize banks and reduce sediment and nutrient loads. While most instream nutrient retention measurements are often limited to low flow conditions, most of the nutrient load is mobilized at high stream flows in urban settings. We, therefore, use a process‐based stream ecosystem model in conjunction with measurements at low flows and focus on estimation of stream nitrogen retention over the full streamflow distribution. The model provides a theoretical framework to evaluate the geomorphic, hydrologic, and ecological factors that are manipulated by stream restoration, and drive nitrogen retention. We set a model for a pool‐riffle sequence restored stream (190 m) in Baltimore County, Maryland and calibrated the model to thein situmeasured primary production (Nash–Sutcliffe model efficiency coefficient [NSE] NSE = 0.89), respiration (NSE = 0.74), and nitrate uptake lengths (R2 = 0.88). At the daily scale, simulations showed low nitrogen retention during high flows due to high transport rates, mobilization of stored hyporheic nitrogen, and scouring of periphyton biomass. This result underscores the need to reduce contributing watershed runoff flashiness to promote aquatic nutrient cycling and retention. At monthly and yearly time scale, model predicted a higher percent reduction in summer than in winter and estimated 5.7%–9.5% of annual nitrate reductions. While the model was tested in a pool‐riffle sequence restoration design, the approach can be adapted to evaluate a range of channel restoration design characteristics, and the effects of upland watershed restoration to mitigate stormwater loading through both restored and unrestored streams.
more »
« less
Low hyporheic denitrification in headwater streams revealed by nutrient injections and in situ gas measurements
Stream networks can retain or remove nutrient pollution, including nitrate from agricultural and urban runoff. However, assessing the location and timing of nutrient uptake remains challenging because of the hydrological and biogeochemical complexity of dynamic stream ecosystems. We used a novel approach to continuously characterize the biological activity in a stream with in situ measurement of dissolved gases by membrane inlet mass spectrometry (MIMS). In a headwater stream in western France, we compared in situ measurements of O2, CO2, N2, and N2O (the main gases associated with respiration, including denitrification) with more traditional laboratory incubations of collected sediment. The in situ measurements showed near-zero denitrification in the stream and the hyporheic zone. However, the laboratory incubations showed a low but present denitrification potential. This demonstrates how denitrification potential is not necessarily expressed in field hydrological and geochemical conditions. In situ measurements are thus crucial to quantify expressed rates of nutrient removal. Broader application of in situ gas measurement based on technologies such as MIMS could enhance our understanding of the spatiotemporal distribution of stream and hyporheic processes and overall nutrient retention at stream network scales.
more »
« less
- Award ID(s):
- 2011439
- PAR ID:
- 10512570
- Publisher / Repository:
- Science Direct
- Date Published:
- Journal Name:
- Journal of Hydrology
- Volume:
- 627
- Issue:
- PA
- ISSN:
- 0022-1694
- Page Range / eLocation ID:
- 130328
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract In this paper we demonstrate that several ubiquitous hyporheic exchange mechanisms can be represented simply as a one‐dimensional diffusion process, where the diffusivity decays exponentially with depth into the streambed. Based on a meta‐analysis of 106 previously published laboratory measurements of hyporheic exchange (capturing a range of bed morphologies, hydraulic conditions, streambed properties, and experimental approaches) we find that the reference diffusivity and mixing length‐scale are functions of the permeability Reynolds Number and Schmidt Number. These dimensionless numbers, in turn, can be estimated for a particular stream from the median grain size of the streambed and the stream's depth, slope, and temperature. Application of these results to a seminal study of nitrate removal in 72 headwater streams across the United States, reveals: (a) streams draining urban and agricultural landscapes have a diminished capacity for in‐stream and in‐bed mixing along with smaller subsurface storage zones compared to streams draining reference landscapes; (b) under steady‐state conditions nitrate uptake in the streambed is primarily biologically controlled; and (c) median reaction timescales for nitrate removal in the hyporheic zone are 0.5 and 20 hr for uptake by assimilation and denitrification, respectively. While further research is needed, the simplicity and extensibility of the framework described here should facilitate cross‐disciplinary discussions and inform reach‐scale studies of pollutant fate and transport and their scale‐up to watersheds and beyond.more » « less
-
Introduction Damming has substantially fragmented and altered riverine ecosystems worldwide. Dams slow down streamflows, raise stream and groundwater levels, create anoxic or hypoxic hyporheic and riparian environments and result in deposition of fine sediments above dams. These sediments represent a good opportunity to study human legacies altering soil environments, for which we lack knowledge on microbial structure, depth distribution, and ecological function. Methods Here, we compared high throughput sequencing of bacterial/ archaeal and fungal community structure (diversity and composition) and functional genes (i.e., nitrification and denitrification) at different depths (ranging from 0 to 4 m) in riparian sediments above breached and existing milldams in the Mid-Atlantic United States. Results We found significant location- and depth-dependent changes in microbial community structure. Proteobacteria, Bacteroidetes, Firmicutes, Actinobacteria, Chloroflexi, Acidobacteria, Planctomycetes, Thaumarchaeota, and Verrucomicrobia were the major prokaryotic components while Ascomycota, Basidiomycota, Chytridiomycota, Mortierellomycota, Mucoromycota, and Rozellomycota dominated fungal sequences retrieved from sediment samples. Ammonia oxidizing genes ( amo A for AOA) were higher at the sediment surface but decreased sharply with depth. Besides top layers, denitrifying genes ( nos Z) were also present at depth, indicating a higher denitrification potential in the deeper layers. However, these results contrasted with in situ denitrification enzyme assay (DEA) measurements, suggesting the presence of dormant microbes and/or other nitrogen processes in deep sediments that compete with denitrification. In addition to enhanced depth stratification, our results also highlighted that dam removal increased species richness, microbial diversity, and nitrification. Discussion Lateral and vertical spatial distributions of soil microbiomes (both prokaryotes and fungi) suggest that not only sediment stratification but also concurrent watershed conditions are important in explaining the depth profiles of microbial communities and functional genes in dammed rivers. The results also provide valuable information and guidance to stakeholders and restoration projects.more » « less
-
Abstract Rivers and streams act as globally significant sources of nitrous oxide (N2O) to the atmosphere, in part through denitrification reactions that will increase in response to ongoing anthropogenic nitrogen loading. While many factors that contribute to the release of N2O relative to inert dinitrogen (N2) are well described, the ability to predict N2O yields from streams remains a fundamental challenge. Here, I revisit results from the second Lotic Intersite Nitrogen eXperiments (LINX II) in the context of turbulent hyporheic exchange. Denitrification efficiency, or the fraction of nitrate delivered to the streambed by stream turbulence that is chemically reduced, emerges as the single best predictor of N2O yields and underpins the first statistically significant models of inter‐site N2O yields. This mechanistic connection is supported by reactive transport modeling of hyporheic zone denitrification representing advective flowpaths, flowpath mixing, and diffusion‐dominated anoxic microzones. Simulated N2O yields are inversely correlated with denitrification efficiency; however, advective models are unable to capture low LINX II N2O yields at low denitrification efficiencies. Hyporheic zone mixing exacerbates this inability to capture observed N2O yields via the promotion of N2O release from fast, oxic flowpaths. Instead, anoxic microzones are required to account for LINX II observations through consistently low N2O yields and the consumption of upstream‐produced N2O. Together, these results provide a framework for controls on stream N2O yields and suggest that stream corridor restoration designs aimed at increasing the capacity of hyporheic zones to remediate nitrate loading, as opposed to increasing hyporheic exchange, will also reduce proportional N2O emissions.more » « less
-
Abstract In streams where water temperatures stress native biota, management of riparian shade or hyporheic exchange are both considered viable management strategies for reducing the peaks of daily and seasonal stream channel temperature cycles. Although shade and hyporheic exchange may have similar effects on stream temperatures, their mechanisms differ. Improved understanding of the heat‐exchange mechanisms influenced by shade and hyporheic exchange will aid in the appropriate application of either stream temperature management strategy. To illustrate a conceptual model highlighting shade as ‘thermal insulation’ and hyporheic exchange imparting ‘thermal capacitance’ to a stream reach, we conducted an in‐silico simulation modelling experiment increasing shade or hyporheic exchange parameters on an idealized, hypothetical stream. We assessed the potential effects of increasing shade or hyporheic exchange on a stream reach using an established process‐based heat‐energy budget model of stream‐atmosphere heat exchange and incorporated an advection‐driven hyporheic heat exchange routine. The model tracked heat transport through the hyporheic zone and exchange with the stream channel, while including the effects of hyporheic water age distribution on upwelling hyporheic temperatures. Results showed that shade and hyporheic exchange similarly damped diurnal temperature cycles and differentially altered seasonal cycles of our theoretical stream. In winter, hyporheic exchange warmed simulated channel temperatures whereas shade had little effect. In summer, both shade and hyporheic exchange cooled channel temperatures, though the effects of shade were more pronounced. Our simple‐to‐grasp analogies of ‘thermal insulation’ for shade effects and ‘thermal capacitance’ for hyporheic exchange effects on stream temperature encourage more accurate conceptualization of complex, dynamic heat exchange processes among the atmosphere, stream channel, and alluvial aquifer.more » « less
An official website of the United States government

