skip to main content


Title: Stream Transport and Substrate Controls on Nitrous Oxide Yields From Hyporheic Zone Denitrification
Abstract

Rivers and streams act as globally significant sources of nitrous oxide (N2O) to the atmosphere, in part through denitrification reactions that will increase in response to ongoing anthropogenic nitrogen loading. While many factors that contribute to the release of N2O relative to inert dinitrogen (N2) are well described, the ability to predict N2O yields from streams remains a fundamental challenge. Here, I revisit results from the second Lotic Intersite Nitrogen eXperiments (LINX II) in the context of turbulent hyporheic exchange. Denitrification efficiency, or the fraction of nitrate delivered to the streambed by stream turbulence that is chemically reduced, emerges as the single best predictor of N2O yields and underpins the first statistically significant models of inter‐site N2O yields. This mechanistic connection is supported by reactive transport modeling of hyporheic zone denitrification representing advective flowpaths, flowpath mixing, and diffusion‐dominated anoxic microzones. Simulated N2O yields are inversely correlated with denitrification efficiency; however, advective models are unable to capture low LINX II N2O yields at low denitrification efficiencies. Hyporheic zone mixing exacerbates this inability to capture observed N2O yields via the promotion of N2O release from fast, oxic flowpaths. Instead, anoxic microzones are required to account for LINX II observations through consistently low N2O yields and the consumption of upstream‐produced N2O. Together, these results provide a framework for controls on stream N2O yields and suggest that stream corridor restoration designs aimed at increasing the capacity of hyporheic zones to remediate nitrate loading, as opposed to increasing hyporheic exchange, will also reduce proportional N2O emissions.

 
more » « less
Award ID(s):
2103520
NSF-PAR ID:
10448179
Author(s) / Creator(s):
 
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
AGU Advances
Volume:
2
Issue:
4
ISSN:
2576-604X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Denitrifying woodchip bioreactors (WBRs) are increasingly used to manage the release of non‐point source nitrogen (N) by stimulating microbial denitrification. Woodchips serve as a renewable organic carbon (C) source, yet the recalcitrance of organic C in lignocellulosic biomass causes many WBRs to be C‐limited. Prior studies have observed that oxic–anoxic cycling increased the mobilization of organic C, increased nitrate (NO3) removal rates, and attenuated production of nitrous oxide (N2O). Here, we use multi‐omics approaches and amplicon sequencing of fungal 5.8S‐ITS2 and prokaryotic 16S rRNA genes to elucidate the microbial drivers for enhanced NO3removal and attenuated N2O production under redox‐dynamic conditions. Transient oxic periods stimulated the expression of fungal ligninolytic enzymes, increasing the bioavailability of woodchip‐derived C and stimulating the expression of denitrification genes. Nitrous oxide reductase (nosZ) genes were primarily clade II, and the ratio of clade II/clade InosZtranscripts during the oxic–anoxic transition was strongly correlated with the N2O yield. Analysis of metagenome‐assembled genomes revealed that many of the denitrifying microorganisms also have a genotypic ability to degrade complex polysaccharides like cellulose and hemicellulose, highlighting the adaptation of the WBR microbiome to the ecophysiological niche of the woodchip matrix.

     
    more » « less
  2. Denitrification in woodchip bioreactors (WBRs) treating agricultural drainage and runoff is frequently carbon-limited due to the recalcitrance of carbon (C) in lignocellulosic woodchip biomass. Recent research has shown that redox fluctuations, achieved through periodic draining and re-flooding of WBRs, can increase nitrate removal rates by enhancing the release of labile C during oxic periods. While dying–rewetting (DRW) cycles appear to hold great promise for improving the performance of denitrifying WBRs, redox fluctuations in nitrogen-rich environments are commonly associated with enhanced emissions of the greenhouse gas nitrous oxide (N 2 O) due to inhibition of N 2 O reduction in microaerophilic conditions. Here, we evaluate the effects of oxic–anoxic cycling associated with DRW on the quantity and quality of C mobilized from woodchips, nitrate removal rates, and N 2 O accumulation in a complementary set of flow-through and batch laboratory bioreactors at 20 °C. Redox fluctuations significantly increased nitrate removal rates from 4.8–7.2 g N m −3 d −1 in a continuously saturated (CS) reactor to 9.8–11.2 g N m −3 d −1 24 h after a reactor is drained and re-saturated. Results support the theory that DRW conditions lead to faster NO 3 − removal rates by increasing mobilization of labile organic C from woodchips, with lower aromaticity in the dissolved C pool of oxic–anoxic reactors highlighting the importance of lignin breakdown to overall carbon release. There was no evidence for greater N 2 O accumulation, measured as N 2 O product yields, in the DRW reactors compared to continuously saturated reactors. We propose that greater organic C availability for N 2 O reducers following oxic periods outweighs the effect of microaerophilic inhibition of N 2 O reduction in controlling N 2 O dynamics. Implications of these findings for optimizing DRW cycling to enhance nitrate removal rates in denitrifying WBRs are discussed. 
    more » « less
  3. Abstract

    Groundwater discharge to streams is a nonpoint source of nitrogen (N) that confounds N mitigation efforts and represents a significant portion of the annual N loading to watersheds. However, we lack an understanding of where and how much groundwater N enters streams and watersheds. Nitrogen concentrations at the end of groundwater flowpaths are the culmination of biogeochemical and physical processes from the contributing land area where groundwater recharges, within the aquifer system, and in the near-stream riparian area where groundwater discharges to streams. Our research objectives were to quantify the spatial distribution of N concentrations at groundwater discharges throughout a mixed land-use watershed and to evaluate how relationships among contributing and riparian land cover, modeled aquifer characteristics, and groundwater discharge biogeochemistry explain the spatial variation in groundwater discharge N concentrations. We accomplished this by integrating high-resolution thermal infrared surveys to locate groundwater discharge, biogeochemical sampling of groundwater, and a particle tracking model that links groundwater discharge locations to their contributing area land cover. Groundwater N loading from groundwater discharges within the watershed varied substantially between and within streambank groundwater discharge features. Groundwater nitrate concentrations were spatially heterogeneous ranging from below 0.03–11.45 mg-N/L, varying up to 20-fold within meters. When combined with the particle tracking model results and land cover metrics, we found that groundwater discharge nitrate concentrations were best predicted by a linear mixed-effect model that explained over 60% of the variation in nitrate concentrations, including aquifer chemistry (dissolved oxygen, Cl, SO42−), riparian area forested land cover, and modeled physical aquifer characteristics (discharge, Euclidean distance). Our work highlights the significant spatial variability in groundwater discharge nitrate concentrations within mixed land-use watersheds and the need to understand groundwater N processing across the many spatiotemporal scales within groundwater cycling.

     
    more » « less
  4. Abstract

    Tides in coastal rivers drive river‐groundwater (hyporheic) exchange and provide opportunities for nitrate removal that may improve coastal water quality. Silt and sand layers in coastal floodplain sediments can alter the flow and transformation of nitrate. Our goal was to understand how sediment heterogeneity influences nitrogen dynamics near tidal rivers. Numerical simulations show that oxic, variably saturated sand layers and anoxic, organic‐rich silt layers are sites of nitrification and denitrification, respectively. The exchange of river water and nitrate through heterogeneous sediments increases with sand fraction, as sand lenses become longer and more connected. The amount of nitrate removed from river water also increases but represents a smaller portion of total nitrate exchange through the hyporheic zone, causing removal efficiency to decline. Our results suggest that accurate characterization of aquifer heterogeneity leads to an improved understanding of sites of nutrient transformation within floodplain sediments.

     
    more » « less
  5. Abstract Nitrogen loss from cultivated soils threatens the economic and environmental sustainability of agriculture. Nitrate (NO 3 − ) derived from nitrification of nitrogen fertilizer and ammonified soil organic nitrogen may be lost from soils via denitrification, producing dinitrogen gas (N 2 ) or the greenhouse gas nitrous oxide (N 2 O). Nitrate that accumulates in soils is also subject to leaching loss, which can degrade water quality and make NO 3 − available for downstream denitrification. Here we use patterns in the isotopic composition of NO 3 − observed from 2012 to 2017 to characterize N loss to denitrification within soils, groundwater, and stream riparian corridors of a non-irrigated agroecosystem in the northern Great Plains (Judith River Watershed, Montana, USA). We find evidence for denitrification across these domains, expressed as a positive linear relationship between δ 15 N and δ 18 O values of NO 3 − , as well as increasing δ 15 N values with decreasing NO 3 − concentration. In soils, isotopic evidence of denitrification was present during fallow periods (no crop growing), despite net accumulation of NO 3 − from the nitrification of ammonified soil organic nitrogen. We combine previous results for soil NO 3 − mass balance with δ 15 N mass balance to estimate denitrification rates in soil relative to groundwater and streams. Substantial denitrification from soils during fallow periods may be masked by nitrification of ammonified soil organic nitrogen, representing a hidden loss of soil organic nitrogen and an under-quantified flux of N to the atmosphere. Globally, cultivated land spends ca. 50% of time in a fallow condition; denitrification in fallow soils may be an overlooked but globally significant source of agricultural N 2 O emissions, which must be reduced along-side other emissions to meet Paris Agreement goals for slowing global temperature increase. 
    more » « less