We introduce Visual Inverse Kinematics (VIK), which finds kinematically feasible joint configurations that satisfy vision-based constraints, bridging the gap between inverse kinematics (IK) and visual servoing (VS). Unlike IK, no explicit end-effector pose is given, and unlike VS, exact image measurements may not be available. In this work, we develop a formulation of the VIK problem with a field of view (FoV) constraint, enforcing the visibility of an object from a camera on the robot. Our proposed solution introduces a virtual kinematic chain that connects the physical robot and the object, transforming the FoV constraint into a joint angle kinematic constraint. Along the way, we introduce multiple vision-based cost functions to fulfill different objectives. We solve this formulation of the VIK problem using a method that involves a semidefinite program (SDP) constraint followed by a rank minimization algorithm. The performance of this method for solving the VIK problem is validated through simulations. 
                        more » 
                        « less   
                    
                            
                            An SDP Optimization Formulation for the Inverse Kinematics Problem
                        
                    
    
            Inverse kinematics (IK) is an important problem in robot control and motion planning; however, the nonlinearity of the map from joint angles to robot configurations makes the problem nonconvex. In this paper, we propose an inverse kinematics solver that works in the space of rotation matrices of the link reference frames rather than joint angles. To overcome the nonlinearity of the manifold of rotation matrices $$\mathbf{SO}(3)$$, we propose a semidefinite programming (SDP) relaxation of the kinematic constraints followed by a fixed-trace rank minimization via maximization of a convex function. Along the way, we show that the feasible set of an IK problem is exactly the intersection of a convex set and fixed-trace rank-1 matrices. Thanks to the use of matrices with fixed trace, our algorithm to obtain rank-1 solutions has guaranteed local convergence. Unlike some traditional solvers, our method does not require an initial guess, and can be applied to robots with closed kinematic chains without ad-hoc modifications such as splitting the kinematic chain. Compared to other work that performs SDP relaxation for IK problems, our formulation is simpler, and uses variables with smaller sizes. We validate our approach via simulations on a closed kinematic chain constituted by two robotic arms holding a box, comparing against a standard IK method. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2212051
- PAR ID:
- 10512597
- Publisher / Repository:
- IEEE
- Date Published:
- Journal Name:
- IEEE International Conference on Decision and Control
- ISBN:
- 979-8-3503-0124-3
- Page Range / eLocation ID:
- 4731 to 4738
- Format(s):
- Medium: X
- Location:
- Singapore, Singapore
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            We present a discrete-optimization technique for finding feasible robot arm trajectories that pass through provided 6-DOF Cartesian-space end-effector paths with high accuracy, a problem called pathwise-inverse kinematics. The output from our method consists of a path function of joint-angles that best follows the provided end-effector path function, given some definition of ``best''. Our method, called Stampede, casts the robot motion translation problem as a discrete-space graph-search problem where the nodes in the graph are individually solved for using non-linear optimization; framing the problem in such a way gives rise to a well-structured graph that affords an effective best path calculation using an efficient dynamic-programming algorithm. We present techniques for sampling configuration space, such as diversity sampling and adaptive sampling, to construct the search-space in the graph. Through an evaluation, we show that our approach performs well in finding smooth, feasible, collision-free robot motions that match the input end-effector trace with very high accuracy, while alternative approaches, such as a state-of-the-art per-frame inverse kinematics solver and a global non-linear trajectory-optimization approach, performed unfavorably.more » « less
- 
            Inverse kinematics solves the problem of how to control robot arm joints to achieve desired end effector positions, which is critical to any robot arm design and implemen- tations of control algorithms. It is a common misunderstanding that closed-form inverse kinematics analysis is solved. Popular software and algorithms, such as gradient descent or any multi-variant equations solving algorithm, claims solving inverse kinematics but only on the numerical level. While the numerical inverse kinematics solutions are rela- tively straightforward to obtain, these methods often fail, due to dependency on specific numerical values, even when the inverse kinematics solutions exist. Therefore, closed-form inverse kinematics analysis is superior, but there is no generalized automated algorithm. Up till now, the high-level logical reasoning involved in solving closed-form inverse kine- matics made it hard to automate, so it’s handled by human experts. We developed IKBT, a knowledge-based intelligent system that can mimic human experts’ behaviors in solving closed-from inverse kinematics using Behavior Tree. Knowledge and rules used by engineers when solving closed-from inverse kinematics are encoded as actions in Behavior Tree. The order of applying these rules is governed by higher level composite nodes, which resembles the logical reasoning process of engineers. It is also the first time that the dependency of joint variables, an important issue in inverse kinematics analysis, is automatically tracked in graph form. Besides generating closed-form solutions, IKBT also explains its solving strategies in human (engineers) interpretable form. This is a proof-of-concept of using Behavior Trees to solve high-cognitive problems.more » « less
- 
            Open-sourced kinematic models of the da Vinci Surgical System have previously been developed using serial chains for forward and inverse kinematics. However, these models do not describe the motion of every link in the closed-loop mechanism of the da Vinci manipulators; knowing the kinematics of all components in motion is essential for the foundation of modeling the system dynamics and implementing representative simulations. This paper proposes a modeling method of the closed-loop kinematics, using the existing da Vinci kinematics and an optical motion capture link length calibration. Resulting link lengths and DH parameters are presented and used as the basis for ROS-based simulation models. The models were simulated in RViz visualization simulation and Gazebo dynamics simulation. Additionally, the closed-loop kinematic chain was verified by comparing the remote center of motion location of simulation with the hardware. Furthermore, the dynamic simulation resulted in satisfactory joint stability and performance. All models and simulations are provided as an open-source package.more » « less
- 
            This paper presents an inverse kinematic controller using neural networks for trajectory controlling of a delta robot in real-time. The developed control scheme is purely data-driven and does not require prior knowledge of the delta robot kinematics. Moreover, it can adapt to the changes in the kinematics of the robot. For developing the controller, the kinematic model of the delta robot is estimated by using neural networks. Then, the trained neural networks are configured as a controller in the system. The parameters of the neural networks are updated while the robot follows a path to adaptively compensate for modeling uncertainties and external disturbances of the control system. One of the main contributions of this paper is to show that updating the parameters of neural networks offers a smaller tracking error in inverse kinematic control of a delta robot with consideration of joint backlash. Different simulations and experiments are conducted to verify the proposed controller. The results show that in the presence of external disturbance, the error in trajectory tracking is bounded, and the negative effect of joint backlash in trajectory tracking is reduced. The developed method provides a new approach to the inverse kinematic control of a delta robot.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
