 Award ID(s):
 1637444
 NSFPAR ID:
 10117599
 Date Published:
 Journal Name:
 Journal of artificial intelligence research and advances
 ISSN:
 23956720
 Format(s):
 Medium: X
 Sponsoring Org:
 National Science Foundation
More Like this

null (Ed.)The DeepLearningEpilepsyDetectionChallenge: design, implementation, andtestofanewcrowdsourced AIchallengeecosystem Isabell Kiral*, Subhrajit Roy*, Todd Mummert*, Alan Braz*, Jason Tsay, Jianbin Tang, Umar Asif, Thomas Schaffter, Eren Mehmet, The IBM Epilepsy Consortium◊ , Joseph Picone, Iyad Obeid, Bruno De Assis Marques, Stefan Maetschke, Rania Khalaf†, Michal RosenZvi† , Gustavo Stolovitzky† , Mahtab Mirmomeni† , Stefan Harrer† * These authors contributed equally to this work † Corresponding authors: rkhalaf@us.ibm.com, rosen@il.ibm.com, gustavo@us.ibm.com, mahtabm@au1.ibm.com, sharrer@au.ibm.com ◊ Members of the IBM Epilepsy Consortium are listed in the Acknowledgements section J. Picone and I. Obeid are with Temple University, USA. T. Schaffter is with Sage Bionetworks, USA. E. Mehmet is with the University of Illinois at UrbanaChampaign, USA. All other authors are with IBM Research in USA, Israel and Australia. Introduction This decade has seen an evergrowing number of scientific fields benefitting from the advances in machine learning technology and tooling. More recently, this trend reached the medical domain, with applications reaching from cancer diagnosis [1] to the development of brainmachineinterfaces [2]. While Kaggle has pioneered the crowdsourcing of machine learning challenges to incentivise data scientists from around the world to advance algorithm and model design, the increasing complexity of problem statements demands of participants to be expert data scientists, deeply knowledgeable in at least one other scientific domain, and competent software engineers with access to large compute resources. People who match this description are few and far between, unfortunately leading to a shrinking pool of possible participants and a loss of experts dedicating their time to solving important problems. Participation is even further restricted in the context of any challenge run on confidential use cases or with sensitive data. Recently, we designed and ran a deep learning challenge to crowdsource the development of an automated labelling system for brain recordings, aiming to advance epilepsy research. A focus of this challenge, run internally in IBM, was the development of a platform that lowers the barrier of entry and therefore mitigates the risk of excluding interested parties from participating. The challenge: enabling wide participation With the goal to run a challenge that mobilises the largest possible pool of participants from IBM (global), we designed a use case around previous work in epileptic seizure prediction [3]. In this “Deep Learning Epilepsy Detection Challenge”, participants were asked to develop an automatic labelling system to reduce the time a clinician would need to diagnose patients with epilepsy. Labelled training and blind validation data for the challenge were generously provided by Temple University Hospital (TUH) [4]. TUH also devised a novel scoring metric for the detection of seizures that was used as basis for algorithm evaluation [5]. In order to provide an experience with a low barrier of entry, we designed a generalisable challenge platform under the following principles: 1. No participant should need to have indepth knowledge of the specific domain. (i.e. no participant should need to be a neuroscientist or epileptologist.) 2. No participant should need to be an expert data scientist. 3. No participant should need more than basic programming knowledge. (i.e. no participant should need to learn how to process fringe data formats and stream data efficiently.) 4. No participant should need to provide their own computing resources. In addition to the above, our platform should further • guide participants through the entire process from signup to model submission, • facilitate collaboration, and • provide instant feedback to the participants through data visualisation and intermediate online leaderboards. The platform The architecture of the platform that was designed and developed is shown in Figure 1. The entire system consists of a number of interacting components. (1) A web portal serves as the entry point to challenge participation, providing challenge information, such as timelines and challenge rules, and scientific background. The portal also facilitated the formation of teams and provided participants with an intermediate leaderboard of submitted results and a final leaderboard at the end of the challenge. (2) IBM Watson Studio [6] is the umbrella term for a number of services offered by IBM. Upon creation of a user account through the web portal, an IBM Watson Studio account was automatically created for each participant that allowed users access to IBM's Data Science Experience (DSX), the analytics engine Watson Machine Learning (WML), and IBM's Cloud Object Storage (COS) [7], all of which will be described in more detail in further sections. (3) The user interface and starter kit were hosted on IBM's Data Science Experience platform (DSX) and formed the main component for designing and testing models during the challenge. DSX allows for realtime collaboration on shared notebooks between team members. A starter kit in the form of a Python notebook, supporting the popular deep learning libraries TensorFLow [8] and PyTorch [9], was provided to all teams to guide them through the challenge process. Upon instantiation, the starter kit loaded necessary python libraries and custom functions for the invisible integration with COS and WML. In dedicated spots in the notebook, participants could write custom preprocessing code, machine learning models, and postprocessing algorithms. The starter kit provided instant feedback about participants' custom routines through data visualisations. Using the notebook only, teams were able to run the code on WML, making use of a compute cluster of IBM's resources. The starter kit also enabled submission of the final code to a data storage to which only the challenge team had access. (4) Watson Machine Learning provided access to shared compute resources (GPUs). Code was bundled up automatically in the starter kit and deployed to and run on WML. WML in turn had access to shared storage from which it requested recorded data and to which it stored the participant's code and trained models. (5) IBM's Cloud Object Storage held the data for this challenge. Using the starter kit, participants could investigate their results as well as data samples in order to better design custom algorithms. (6) Utility Functions were loaded into the starter kit at instantiation. This set of functions included code to preprocess data into a more common format, to optimise streaming through the use of the NutsFlow and NutsML libraries [10], and to provide seamless access to the all IBM services used. Not captured in the diagram is the final code evaluation, which was conducted in an automated way as soon as code was submitted though the starter kit, minimising the burden on the challenge organising team. Figure 1: Highlevel architecture of the challenge platform Measuring success The competitive phase of the "Deep Learning Epilepsy Detection Challenge" ran for 6 months. Twentyfive teams, with a total number of 87 scientists and software engineers from 14 global locations participated. All participants made use of the starter kit we provided and ran algorithms on IBM's infrastructure WML. Seven teams persisted until the end of the challenge and submitted final solutions. The best performing solutions reached seizure detection performances which allow to reduce hundredfold the time eliptologists need to annotate continuous EEG recordings. Thus, we expect the developed algorithms to aid in the diagnosis of epilepsy by significantly shortening manual labelling time. Detailed results are currently in preparation for publication. Equally important to solving the scientific challenge, however, was to understand whether we managed to encourage participation from nonexpert data scientists. Figure 2: Primary occupation as reported by challenge participants Out of the 40 participants for whom we have occupational information, 23 reported Data Science or AI as their main job description, 11 reported being a Software Engineer, and 2 people had expertise in Neuroscience. Figure 2 shows that participants had a variety of specialisations, including some that are in no way related to data science, software engineering, or neuroscience. No participant had deep knowledge and experience in data science, software engineering and neuroscience. Conclusion Given the growing complexity of data science problems and increasing dataset sizes, in order to solve these problems, it is imperative to enable collaboration between people with differences in expertise with a focus on inclusiveness and having a low barrier of entry. We designed, implemented, and tested a challenge platform to address exactly this. Using our platform, we ran a deeplearning challenge for epileptic seizure detection. 87 IBM employees from several business units including but not limited to IBM Research with a variety of skills, including sales and design, participated in this highly technical challenge.more » « less

Lierler, Yuliya ; Morales, Jose F ; Dodaro, Carmine ; Dahl, Veroniica ; Gebser, Martin ; Tekle, Tuncay (Ed.)Knowledge representation and reasoning (KRR) systems represent knowledge as collections of facts and rules. Like databases, KRR systems contain information about domains of human activities like industrial enterprises, science, and business. KRRs can represent complex concepts and relations, and they can query and manipulate information in sophisticated ways. Unfortunately, the KRR technology has been hindered by the fact that specifying the requisite knowledge requires skills that most domain experts do not have, and professional knowledge engineers are hard to find. One solution could be to extract knowledge from English text, and a number of works have attempted to do so (OpenSesame, Google's Sling, etc.). Unfortunately, at present, extraction of logical facts from unrestricted natural language is still too inaccurate to be used for reasoning, while restricting the grammar of the language (socalled controlled natural language, or CNL) is hard for the users to learn and use. Nevertheless, some recent CNLbased approaches, such as the Knowledge Authoring Logic Machine (KALM), have shown to have very high accuracy compared to others, and a natural question is to what extent the CNL restrictions can be lifted. In this paper, we address this issue by transplanting the KALM framework to a neural natural language parser, mStanza. Here we limit our attention to authoring facts and queries and therefore our focus is what we call factual English statements. Authoring other types of knowledge, such as rules, will be considered in our followup work. As it turns out, neural network based parsers have problems of their own and the mistakes they make range from partofspeech tagging to lemmatization to dependency errors. We present a number of techniques for combating these problems and test the new system, KALMFL (i.e., KALM for factual language), on a number of benchmarks, which show KALMFL achieves correctness in excess of 95%.more » « less

Abstract Knowledge representation and reasoning (KRR) systems describe and reason with complex concepts and relations in the form of facts and rules. Unfortunately, wide deployment of KRR systems runs into the problem that domain experts have great difficulty constructing correct logical representations of their domain knowledge. Knowledge engineers can help with this construction process, but there is a deficit of such specialists. The earlier Knowledge Authoring Logic Machine (KALM) based on Controlled Natural Language (CNL) was shown to have very high accuracy for authoring facts and questions. More recently, KALM^{FL}, a successor of KALM, replaced CNL with
factual English, which is much less restrictive and requires very little training from users. However, KALM^{FL}has limitations in representing certain types of knowledge, such as authoring rules for multistep reasoning or understanding actions with timestamps. To address these limitations, we propose KALM^{RA}to enable authoring of rules and actions. Our evaluation using the UTI guidelines benchmark shows that KALM^{RA}achieves a high level of correctness (100%) on rule authoring. When used for authoring and reasoning with actions, KALM^{RA}achieves more than 99.3% correctness on the bAbI benchmark, demonstrating its effectiveness in more sophisticated KRR jobs. Finally, we illustrate the logical reasoning capabilities of KALM^{RA}by drawing attention to the problems faced by the recently made famous AI, ChatGPT. 
Embedding properties of network realizations of dissipative reduced order models Jörn Zimmerling, Mikhail Zaslavsky,Rob Remis, Shasri Moskow, Alexander Mamonov, Murthy Guddati, Vladimir Druskin, and Liliana Borcea Mathematical Sciences Department, Worcester Polytechnic Institute https://www.wpi.edu/people/vdruskin Abstract Realizations of reduced order models of passive SISO or MIMO LTI problems can be transformed to tridiagonal and blocktridiagonal forms, respectively, via dierent modications of the Lanczos algorithm. Generally, such realizations can be interpreted as ladder resistorcapacitorinductor (RCL) networks. They gave rise to network syntheses in the rst half of the 20th century that was at the base of modern electronics design and consecutively to MOR that tremendously impacted many areas of engineering (electrical, mechanical, aerospace, etc.) by enabling ecient compression of the underlining dynamical systems. In his seminal 1950s works Krein realized that in addition to their compressing properties, network realizations can be used to embed the data back into the state space of the underlying continuum problems. In more recent works of the authors Krein's ideas gave rise to socalled nitedierence Gaussian quadrature rules (FDGQR), allowing to approximately map the ROM statespace representation to its full order continuum counterpart on a judicially chosen grid. Thus, the state variables can be accessed directly from the transfer function without solving the full problem and even explicit knowledge of the PDE coecients in the interior, i.e., the FDGQR directly learns" the problem from its transfer function. This embedding property found applications in PDE solvers, inverse problems and unsupervised machine learning. Here we show a generalization of this approach to dissipative PDE problems, e.g., electromagnetic and acoustic wave propagation in lossy dispersive media. Potential applications include solution of inverse scattering problems in dispersive media, such as seismic exploration, radars and sonars. To x the idea, we consider a passive irreducible SISO ROM fn(s) = Xn j=1 yi s + σj , (62) assuming that all complex terms in (62) come in conjugate pairs. We will seek ladder realization of (62) as rjuj + vj − vj−1 = −shˆjuj , uj+1 − uj + ˆrj vj = −shj vj , (63) for j = 0, . . . , n with boundary conditions un+1 = 0, v1 = −1, and 4n real parameters hi, hˆi, ri and rˆi, i = 1, . . . , n, that can be considered, respectively, as the equivalent discrete inductances, capacitors and also primary and dual conductors. Alternatively, they can be viewed as respectively masses, spring stiness, primary and dual dampers of a mechanical string. Reordering variables would bring (63) into tridiagonal form, so from the spectral measure given by (62 ) the coecients of (63) can be obtained via a nonsymmetric Lanczos algorithm written in Jsymmetric form and fn(s) can be equivalently computed as fn(s) = u1. The cases considered in the original FDGQR correspond to either (i) real y, θ or (ii) real y and imaginary θ. Both cases are covered by the Stieltjes theorem, that yields in case (i) real positive h, hˆ and trivial r, rˆ, and in case (ii) real positive h,r and trivial hˆ,rˆ. This result allowed us a simple interpretation of (62) as the staggered nitedierence approximation of the underlying PDE problem [2]. For PDEs in more than one variables (including topologically rich datamanifolds), a nitedierence interpretation is obtained via a MIMO extensions in block form, e.g., [4, 3]. The main diculty of extending this approach to general passive problems is that the Stieltjes theory is no longer applicable. Moreover, the tridiagonal realization of a passive ROM transfer function (62) via the ladder network (63) cannot always be obtained in portHamiltonian form, i.e., the equivalent primary and dual conductors may change sign [1]. 100 Embedding of the Stieltjes problems, e.g., the case (i) was done by mapping h and hˆ into values of acoustic (or electromagnetic) impedance at grid cells, that required a special coordinate stretching (known as travel time coordinate transform) for continuous problems. Likewise, to circumvent possible nonpositivity of conductors for the nonStieltjes case, we introduce an additional complex sdependent coordinate stretching, vanishing as s → ∞ [1]. This stretching applied in the discrete setting induces a diagonal factorization, removes oscillating coecients, and leads to an accurate embedding for moderate variations of the coecients of the continuum problems, i.e., it maps discrete coecients onto the values of their continuum counterparts. Not only does this embedding yields an approximate linear algebraic algorithm for the solution of the inverse problems for dissipative PDEs, it also leads to new insight into the properties of their ROM realizations. We will also discuss another approach to embedding, based on KreinNudelman theory [5], that results in special datadriven adaptive grids. References [1] Borcea, Liliana and Druskin, Vladimir and Zimmerling, Jörn, A reduced order model approach to inverse scattering in lossy layered media, Journal of Scientic Computing, V. 89, N1, pp. 136,2021 [2] Druskin, Vladimir and Knizhnerman, Leonid, Gaussian spectral rules for the threepoint second dierences: I. A twopoint positive denite problem in a semiinnite domain, SIAM Journal on Numerical Analysis, V. 37, N 2, pp.403422, 1999 [3] Druskin, Vladimir and Mamonov, Alexander V and Zaslavsky, Mikhail, Distance preserving model order reduction of graphLaplacians and cluster analysis, Druskin, Vladimir and Mamonov, Alexander V and Zaslavsky, Mikhail, Journal of Scientic Computing, V. 90, N 1, pp 130, 2022 [4] Druskin, Vladimir and Moskow, Shari and Zaslavsky, Mikhail LippmannSchwingerLanczos algorithm for inverse scattering problems, Inverse Problems, V. 37, N. 7, 2021, [5] Mark Adolfovich Nudelman The Krein String and Characteristic Functions of Maximal Dissipative Operators, Journal of Mathematical Sciences, 2004, V 124, pp 49184934 Go back to Plenary Speakers Go back to Speakers Go backmore » « less

This paper focuses on inverse reinforcement learning (IRL) for autonomous robot navigation using semantic observations. The objective is to infer a cost function that explains demonstrated behavior while relying only on the expert’s observations and statecontrol trajectory. We develop a map encoder, which infers semantic class probabilities from the observation sequence, and a cost encoder, defined as deep neural network over the semantic features. Since the expert cost is not directly observable, the representation parameters can only be optimized by differentiating the error between demonstrated controls and a control policy computed from the cost estimate. The error is optimized using a closedform subgradient computed only over a subset of promising states via a motion planning algorithm. We show that our approach learns to follow traffic rules in the autonomous driving CARLA simulator by relying on semantic observations of cars, sidewalks and road lanes.more » « less