skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Title: A Broad Line-width, Compact, Millimeter-bright Molecular Emission Line Source near the Galactic Center
Abstract

A compact source, G0.02467–0.0727, was detected in Atacama Large Millimeter/submillimeter Array 3 mm observations in continuum and very broad line emission. The continuum emission has a spectral indexα≈ 3.3, suggesting that the emission is from dust. The line emission is detected in several transitions of CS, SO, and SO2and exhibits a line width FWHM ≈ 160 km s−1. The line profile appears Gaussian. The emission is weakly spatially resolved, coming from an area on the sky ≲1″ in diameter (≲104au at the distance of the Galactic center, GC). The centroid velocity isvLSR≈ 40–50 km s−1, which is consistent with a location in the GC. With multiple SO lines detected, and assuming local thermodynamic equilibrium (LTE) conditions, the gas temperature isTLTE= 13 K, which is colder than seen in typical GC clouds, though we cannot rule out low-density, subthermally excited, warmer gas. Despite the high velocity dispersion, no emission is observed from SiO, suggesting that there are no strong (≳10 km s−1) shocks in the molecular gas. There are no detections at other wavelengths, including X-ray, infrared, and radio. We consider several explanations for the millimeter ultra-broad-line object (MUBLO), including protostellar outflow, explosive outflow, a collapsing cloud, an evolved star, a stellar merger, a high-velocity compact cloud, an intermediate-mass black hole, and a background galaxy. Most of these conceptual models are either inconsistent with the data or do not fully explain them. The MUBLO is, at present, an observationally unique object.

 
more » « less
Award ID(s):
2008101 1816715 2108938 2206510 2145689 2309542 2309536 2206511
NSF-PAR ID:
10512716
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal Letters
Volume:
968
Issue:
1
ISSN:
2041-8205
Format(s):
Medium: X Size: Article No. L11
Size(s):
Article No. L11
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We present results of [Cii] 158μm emission line observations, and report the spectroscopic redshift confirmation of a strongly lensed (μ∼ 20) star-forming galaxy, MACS0308-zD1 atz= 6.2078 ± 0.0002. The [Cii] emission line is detected with a signal-to-noise ratio >6 within the rest-frame UV-bright clump of the lensed galaxy (zD1.1) and exhibits multiple velocity components; the narrow [Cii] has a velocity full width half maximum (FWHM) of 110 ± 20 km s−1, while broader [Cii] is seen with an FWHM of 230 ± 50 km s−1. The broader [Cii] component is blueshifted (−80 ± 20 km s−1) with respect to the narrow [Cii] component, and has a morphology that extends beyond the UV-bright clump. We find that, while the narrow [Cii] emission is most likely associated with zD1.1, the broader component is possibly associated with a physically distinct gas component from zD1.1 (e.g., outflowing or inflowing gas). Based on the nondetection ofλ158μmdust continuum, we find that MACS0308-zD1's star formation activity occurs in a dust-free environment indicated by a strong upper limit of infrared luminosity ≲9 × 108L. Targeting this strongly lensed faint galaxy for follow-up Atacama Large Millimeter/submillimeter Array and JWST observations will be crucial to characterize the details of typical galaxy growth in the early Universe.

     
    more » « less
  2. Abstract

    Protostellar disks are an ubiquitous part of the star formation process and the future sites of planet formation. As part of the Early Planet Formation in Embedded Disks large program, we present high angular resolution dust continuum (∼40 mas) and molecular line (∼150 mas) observations of the Class 0 protostar IRAS 15398–3359. The dust continuum is small, compact, and centrally peaked, while more extended dust structures are found in the outflow directions. We perform a 2D Gaussian fitting and find the deconvolved size and 2σradius of the dust disk to be 4.5 × 2.8 au and 3.8 au, respectively. We estimate the gas+dust disk mass assuming optically thin continuum emission to be 0.6MJ–1.8MJ, indicating a very low mass disk. The CO isotopologues trace components of the outflows and inner envelope, while SO traces a compact, rotating disk-like component. Using several rotation curve fittings on the position–velocity diagram of the SO emission, the lower limits of the protostellar mass and gas disk radius are 0.022Mand 31.2 au, respectively, from our Modified 2 single power-law fitting. A conservative upper limit of the protostellar mass is inferred to be 0.1M. The protostellar mass accretion rate and the specific angular momentum at the protostellar disk edge are found to be in the range of (1.3–6.1) × 10−6Myr−1and (1.2–3.8) × 10−4km s−1pc, respectively, with an age estimated between 0.4 × 104yr and 7.5 × 104yr. At this young age with no clear substructures in the disk, planet formation would likely not yet have started. This study highlights the importance of high-resolution observations and systematic fitting procedures when deriving dynamical properties of deeply embedded Class 0 protostars.

     
    more » « less
  3. Abstract

    We present a high-cadence multiepoch analysis of dramatic variability of three broad emission lines (Mgii, Hβ, and Hα) in the spectra of the luminous quasar (λLλ(5100 Å) = 4.7 × 1044erg s−1) SDSS J141041.25+531849.0 atz= 0.359 with 127 spectroscopic epochs over nine years of monitoring (2013–2022). We observe anticorrelations between the broad emission-line widths and flux in all three emission lines, indicating that all three broad emission lines “breathe” in response to stochastic continuum variations. We also observe dramatic radial velocity shifts in all three broad emission lines, ranging from Δv∼ 400 km s−1to ∼800 km s−1, that vary over the course of the monitoring period. Our preferred explanation for the broad-line variability is complex kinematics in the gas in the broad-line region. We suggest a model for the broad-line variability that includes a combination of gas inflow with a radial gradient, an azimuthal asymmetry (e.g., a hot spot), superimposed on the stochastic flux-driven changes to the optimal emission region (“line breathing”). Similar instances of line-profile variability due to complex gas kinematics around quasars are likely to represent an important source of false positives in radial velocity searches for binary black holes, which typically lack the kind of high-cadence data we analyze here. The long-duration, wide-field, and many-epoch spectroscopic monitoring of SDSS-V BHM-RM provides an excellent opportunity for identifying and characterizing broad emission-line variability, and the inferred nature of the inner gas environment, of luminous quasars.

     
    more » « less
  4. Context.Molecular outflows are believed to be a key ingredient in the process of star formation. The molecular outflow associated with DR21 Main in Cygnus-X is one of the most extreme molecular outflows in the Milky Way in terms of mass and size. The outflow is suggested to belong to a rare class of explosive outflows formed by the disintegration of protostellar systems.

    Aims.We aim to explore the morphology, kinematics, and energetics of the DR21 Main outflow, and to compare those properties to confirmed explosive outflows in order to unravel the underlying driving mechanism behind DR21.

    Methods.We studied line and continuum emission at a wavelength of 3.6 mm with IRAM 30 m and NOEMA telescopes as part of the Cygnus Allscale Survey of Chemistry and Dynamical Environments (CASCADE) program. The spectra include (J= 1−0) transitions of HCO+, HCN, HNC, N2H+, H2CO, and CCH, which trace different temperature and density regimes of the outflowing gas at high velocity resolution (~0.8 km s−1). The map encompasses the entire DR21 Main outflow and covers all spatial scales down to a resolution of 3″ (~0.02 pc).

    Results.Integrated intensity maps of the HCO+emission reveal a strongly collimated bipolar outflow with significant overlap of the blueshifted and redshifted emission. The opening angles of both outflow lobes decrease with velocity, from ~80 to 20° for the velocity range from 5 to 45 km s−1relative to the source velocity. No evidence is found for the presence of elongated, “filament-like” structures expected in explosive outflows. N2H+emission near the western outflow lobe reveals the presence of a dense molecular structure, which appears to be interacting with the DR21 Main outflow.

    Conclusions.The overall morphology as well as the detailed kinematics of the DR21 Main outflow are more consistent with a typical bipolar outflow than with an explosive counterpart.

     
    more » « less
  5. Abstract

    The Orion Kleinmann-Low nebula (Orion KL) is notoriously complex and exhibits a range of physical and chemical components. We conducted high-angular-resolution (subarcsecond) observations of13CH3OHν= 0 (∼0.″3 and ∼0.″7) and CH3CNν8= 1 (∼0.″2 and ∼0.″9) line emission with the Atacama Large Millimeter/submillimeter Array (ALMA) to investigate Orion KL’s structure on small spatial scales (≤350 au). Gas kinematics, excitation temperatures, and column densities were derived from the molecular emission via a pixel-by-pixel spectral line fitting of the image cubes, enabling us to examine the small-scale variation of these parameters. Subregions of the Hot Core have a higher excitation temperature in a 0.″2 beam than in a 0.″9 beam, indicative of possible internal sources of heating. Furthermore, the velocity field includes a bipolar ∼7–8 km s−1feature with a southeast–northwest orientation against the surrounding ∼4–5 km s−1velocity field, which may be due to an outflow. We also find evidence of a possible source of internal heating toward the Northwest Clump, since the excitation temperature there is higher in a smaller beam versus a larger beam. Finally, the region southwest of the Hot Core (Hot Core-SW) presents itself as a particularly heterogeneous region bridging the Hot Core and Compact Ridge. Additional studies to identify the (hidden) sources of luminosity and heating within Orion KL are necessary to better understand the nebula and its chemistry.

     
    more » « less