skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Silicon-photonics-enabled chip-based 3D printer
Abstract Imagine if it were possible to create 3D objects in the palm of your hand within seconds using only a single photonic chip. Although 3D printing has revolutionized the way we create in nearly every aspect of modern society, current 3D printers rely on large and complex mechanical systems to enable layer-by-layer addition of material. This limits print speed, resolution, portability, form factor, and material complexity. Although there have been recent efforts in developing novel photocuring-based 3D printers that utilize light to transform matter from liquid resins to solid objects using advanced methods, they remain reliant on bulky and complex mechanical systems. To address these limitations, we combine the fields of silicon photonics and photochemistry to propose the first chip-based 3D printer. The proposed system consists of only a single millimeter-scale photonic chip without any moving parts that emits reconfigurable visible-light holograms up into a simple stationary resin well to enable non-mechanical 3D printing. Furthermore, we experimentally demonstrate a stereolithography-inspired proof-of-concept version of the chip-based 3D printer using a visible-light beam-steering integrated optical phased array and visible-light-curable resin, showing 3D printing using a chip-based system for the first time. This work demonstrates the first steps towards a highly-compact, portable, and low-cost solution for the next generation of 3D printers.  more » « less
Award ID(s):
2239525
PAR ID:
10512753
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Light: Science & Applications
Volume:
13
Issue:
1
ISSN:
2047-7538
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The utility of visible light for 3D printing has increased in recent years owing to its accessibility and reduced materials interactions, such as scattering and absorption/degradation, relative to traditional UV light‐based processes. However, photosystems that react efficiently with visible light often require multiple molecular components and have strong and diverse absorption profiles, increasing the complexity of formulation and printing optimization. Herein, a streamlined method to select and optimize visible light 3D printing conditions is described. First, green light liquid crystal display (LCD) 3D printing using a novel resin is optimized through traditional empirical methods, which involves resin component selection, spectroscopic characterization, time‐intensive 3D printing under several different conditions, and measurements of dimensional accuracy for each printed object. Subsequent analytical quantification of dynamic photon absorption during green light polymerizations unveils relationships to cure depth that enables facile resin and 3D printing optimization using a model that is a modification to the Jacob's equation traditionally used for stereolithographic 3D printing. The approach and model are then validated using a distinct green light‐activated resin for two types of projection‐based 3D printing. 
    more » « less
  2. Abstract Swarm manufacturing is an emerging manufacturing paradigm that employs a heterogeneous swarm of robots to accomplish complex hybrid manufacturing tasks. Cooperative 3D printing (C3DP), a specialized form of swarm manufacturing, enables multiple printers to collaboratively produce large-scale parts, addressing key tradeoffs in additive manufacturing, such as size, speed, quality, and cost. A fundamental challenge in C3DP is ensuring collision-free, time-optimal printing in a shared workspace. This is a complex problem that can be influenced by factors such as the number of printers, part geometry, printer positioning, mobility, and kinematics. In this article, we present SafeZone*, a collision-free and scalable C3DP framework that optimizes printing time by co-considering the geometry (area and shape) and topology (space-connectivity) of a shared workspace during layer partitioning. We first establish a conceptual framework to mathematically represent the topology of a layer through partition graphs. Then, we use a Voronoi tessellation within a constrained optimization framework to control the partition graph and minimize makespan. The Voronoi sites are associated with printer locations, allowing the framework to integrate physical constraints and facilitating solutions for systems with robotic manipulators. Physical testing in a four-printer scenario with robotic arms confirms that SafeZone* enables collision-free printing, resulting in a printing time reduction of 44.63% when compared to the single-printer scenario. Finally, numerical studies reveal trends in the optimal solutions concerning the chromatic number of their resulting partition graphs and the distribution of the printing areas among printers. 
    more » « less
  3. Additive manufacturing promises to revolutionize manufacturing industries. However, 3D printing of novel build materials is currently limited by constraints inherent to printer designs. In this work, a bench-top powder melt extrusion (PME) 3D printer head was designed and fabricated to print parts directly from powder-based materials rather than filament. The final design of the PME printer head evolved from the Rich Rap Universal Pellet Extruder (RRUPE) design and was realized through an iterative approach. The PME printer was made possible by modifications to the funnel shape, pressure applied to the extrudate by the auger, and hot end structure. Through comparison of parts printed with the PME printer with those from a commercially available fused filament fabrication (FFF) 3D printer using common thermoplastics poly(lactide) (PLA), high impact poly(styrene) (HIPS), and acrylonitrile butadiene styrene (ABS) powders (< 1 mm in diameter), evaluation of the printer performance was performed. For each build material, the PME printed objects show comparable viscoelastic properties by dynamic mechanical analysis (DMA) to those of the FFF objects. However, due to a significant difference in printer resolution between PME (X–Y resolution of 0.8 mm and a Z-layer height calibrated to 0.1 mm) and FFF (X–Y resolution of 0.4 mm and a Z-layer height of 0.18 mm), as well as, an inherently more inconsistent feed of build material for PME than FFF, the resulting print quality, determined by a dimensional analysis and surface roughness comparisons, of the PME printed objects was lower than that of the FFF printed parts based on the print layer uniformity and structure. Further, due to the poorer print resolution and inherent inconsistent build material feed of the PME, the bulk tensile strength and Young’s moduli of the objects printed by PME were lower and more inconsistent (49.2 ± 10.7 MPa and 1620 ± 375 MPa, respectively) than those of FFF printed objects (57.7 ± 2.31 MPa and 2160 ± 179 MPa, respectively). Nevertheless, PME print methods promise an opportunity to provide a platform on which it is possible to rapidly prototype a myriad of thermoplastic materials for 3D printing. 
    more » « less
  4. null (Ed.)
    Purpose The purpose of this research is to develop a new slicing scheme for the emerging cooperative three-dimensional (3D) printing platform that has multiple mobile 3D printers working together on one print job. Design/methodology/approach Because the traditional lay-based slicing scheme does not work for cooperative 3D printing, a chunk-based slicing scheme is proposed to split the print job into chunks so that different mobile printers can print different chunks simultaneously without interfering with each other. Findings A chunk-based slicer is developed for two mobile 3D printers to work together cooperatively. A simulator environment is developed to validate the developed slicer, which shows the chunk-based slicer working effectively, and demonstrates the promise of cooperative 3D printing. Research limitations/implications For simplicity, this research only considered the case of two mobile 3D printers working together. Future research is needed for a slicing and scheduling scheme that can work with thousands of mobile 3D printers. Practical implications The research findings in this work demonstrate a new approach to 3D printing. By enabling multiple mobile 3D printers working together, the printing speed can be significantly increased and the printing capability (for multiple materials and multiple components) can be greatly enhanced. Social implications The chunk-based slicing algorithm is critical to the success of cooperative 3D printing, which may enable an autonomous factory equipped with a swarm of autonomous mobile 3D printers and mobile robots for autonomous manufacturing and assembly. Originality/value This work presents a new approach to 3D printing. Instead of printing layer by layer, each mobile 3D printer will print one chunk at a time, which provides the much-needed scalability for 3D printing to print large-sized object and increase the printing speed. The chunk-based approach keeps the 3D printing local and avoids the large temperature gradient and associated internal stress as the size of the print increases. 
    more » « less
  5. Abstract Among the wide range of additive manufacturing — or “three-dimensional (3D) printing” — technologies, “material jetting” approaches are distinctively suited for multi-material fabrication. Because material jetting strategies, such as “PolyJet 3D printing”, harness inkjets that allow for multiple photopolymer droplets (and sacrificial support materials) to be dispensed in parallel to build 3D objects, distinct materials with unique properties can be readily unified in a single print akin to combining multiple-colored inks using a conventional 2D color printer. Although researchers have leveraged this multi-material capability to achieve, for example, 3D functionally graded and bi-material composite systems, there are cases in which the interface between distinct materials can become a key region of mechanical failure if not designed properly. To elucidate potential design factors that contribute to such failure modes, here we investigate the relationship between the interface design and tensile mechanical failure dynamics for PolyJet-printed bi-material coupons. Experimental results for a select set of bi-material sample designs that were 3D printed using a Stratasys Objet500 Connex3 PolyJet 3D printer and subjected to uniaxial tensile testing using a Tinius Olsen H25K-T benchtop universal testing machine under uniaxial strain revealed that increasing the surface contact area between two distinct materials via changes in geometric design does not necessarily increase the interface strength based on the length scales and loading conditions investigated in the current study and that further studies of the role of multi-material geometric designs in interface integrity are warranted to understand potential mechanisms underlying these results. Given the increasing interest in material jetting — and PolyJet 3D printing in particular — as a pathway to multi-material manufacturing in fields including robotics and fluidic circuitry, this study suggests that multi-material interface geometry should be considered appropriately for future applications. 
    more » « less