Promoting equitable undergraduate engineering education is an overarching concern at many minority-serving institutions (MSI). In addition, historical analysis of student performance in lower-division math and engineering courses at one of the largest MSI revealed an achievement gap in performance between the underrepresented minority students and other students. Furthermore, critical analysis of underlying factors overwhelmingly suggests that academic intervention coupled with sociocultural intervention may be a possible solution to help address this problem. Academic and sociocultural intervention strategies were designed and implemented in lower-division math courses through the National Science Foundation-funded project, “Building Capacity: Advancing Student Success in Undergraduate Engineering and Computer Science (ASSURE-US).” These strategies involved application-based math courses targeted explicitly at undergraduate engineering students. Results of academic intervention strategies in the lower-division math courses at one of the largest MSI demonstrate mixed effectiveness. The results of the academic intervention in lower-division Calculus I (N=150) show that 36% of students reported that the intervention was helpful and helped them learn math, while 38% were neutral. Overall, students reported having difficulty connecting the projects with the mathematics being taught. Similarly, only 10% of students expressed satisfaction with the redesigned intervention modules implemented in Integral Calculus II (N=90), while 52% were neutral. The sociocultural interventions include activities facilitated through the Student-Teacher Interaction Council. These activities include motivational speakers, exam preparation and stress-relief workshop, campus resources and college financial planning workshops, peer advising and learning communities, summer research, and faculty development and support. Results of the sociocultural intervention strategies show that 39% of students reported that the ASSURE-US project helped them identify role models in their discipline, while 34% reported that the project helped them identify and connect to a mentor. Students also reported higher awareness of campus resources, including mental health resources and academic support, with 89% and 90% of students reporting fully or partial understanding of these resources. The academic and sociocultural interventions of the ASSURE-US project were initially designed for in-person, hands-on, project-based, and student-faculty-involved activities; however, due to the COVID-19 pandemic, many of these activities were reimagined and redesigned for virtual instruction. The outcomes of this project so far were significantly impacted by the pandemic.
more »
« less
Raising undergraduate researchers’ interdisciplinary consciousness through dialogue
Abstract The importance of interdisciplinary approaches for research and education in environmental studies and sciences is well known. Integration of the multiple disciplinary approaches taught in separate courses required within these undergraduate majors and minors, however, remains a challenge. Program faculty often come from different departments and do not have time or space to integrate their own approaches with each other, resulting in individual ways of understanding interdisciplinarity. Secondly, senior capstone, thesis, or other project-based degree requirements often come too late in an undergraduate education to design an integrative project. Students would benefit from prior training in identifying complementary or divergent approaches and insights among academic specializations—a skill built from raising interdisciplinary consciousness. We present a workshop designed to enhance undergraduates’ interdisciplinary consciousness that can be easily deployed within courses or co-curricular programs, specifically summer research programs that are focused on dedicated practice within a field of study. The central question of this project is: How do we facilitate interdisciplinary consciousness and assess its impact on our students? We propose a promising, dialogue-based intervention that can be easily replicated. This dialogue would benefit academic programs like environmental studies and sciences that require the interaction and integration of discipline-based norms. We found that our dialogue intervention opens students’ perspectives on the nature of research, who research is for, epistemological differences, and the importance of practicing the research process, a unique educational experience. These perspectives are crucial to becoming collaborative, twenty-first century professionals.
more »
« less
- Award ID(s):
- 2314625
- PAR ID:
- 10512762
- Publisher / Repository:
- Springer Science + Business Media
- Date Published:
- Journal Name:
- Journal of Environmental Studies and Sciences
- Volume:
- 15
- Issue:
- 2
- ISSN:
- 2190-6483
- Format(s):
- Medium: X Size: p. 413-424
- Size(s):
- p. 413-424
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Promoting equitable undergraduate engineering education is an overarching concern at many minority-serving institutions (MSI). In addition, historical analysis of student performance in lower-division math and engineering courses at one of the largest MSI revealed an achievement gap in performance between the underrepresented minority students and other students. Furthermore, critical analysis of underlying factors overwhelmingly suggests that academic intervention coupled with sociocultural intervention may be a possible solution to help address this problem. Academic and sociocultural intervention strategies were designed and implemented in lower-division math courses through the National Science Foundation-funded project, “Building Capacity: Advancing Student Success in Undergraduate Engineering and Computer Science (ASSURE-US).” These strategies involved application-based math courses targeted explicitly at undergraduate engineering students. Results of academic intervention strategies in the lower-division math courses at one of the largest MSI demonstrate mixed effectiveness. The results of the academic intervention in lower-division Calculus I (N=150) show that 36% of students reported that the intervention was helpful and helped them learn math, while 38% were neutral. Overall, students reported having difficulty connecting the projects with the mathematics being taught. Similarly, only 10% of students expressed satisfaction with the redesigned intervention modules implemented in Integral Calculus II (N=90), while 52% were neutral. The sociocultural interventions include activities facilitated through the Student-Teacher Interaction Council. These activities include motivational speakers, exam preparation and stress-relief workshop, campus resources and college financial planning workshops, peer advising and learning communities, summer research, and faculty development and support. Results of the sociocultural intervention strategies show that 39% of students reported that the ASSURE-US project helped them identify role models in their discipline, while 34% reported that the project helped them identify and connect to a mentor. Students also reported higher awareness of campus resources, including mental health resources and academic support, with 89% and 90% of students reporting fully or partial understanding of these resources. The academic and sociocultural interventions of the ASSURE-US project were initially designed for in-person, hands-on, project-based, and student-faculty-involved activities; however, due to the COVID-19 pandemic, many of these activities were reimagined and redesigned for virtual instruction. The outcomes of this project so far were significantly impacted by the pandemic.more » « less
-
The academic preparation of scholars on infrastructure-related disciplines often takes place within isolated professional domains, rarely embracing an interdisciplinary approach for problem solving. The current work describes the implementation and outcomes from an undergraduate program designed to increase students’ awareness and knowledge of infrastructure vulnerabilities to students pursuing engineering and architecture degrees. The program, titled “Resilient Infrastructure and Sustainability Education -Undergraduate Program” utilizes the devastation from Hurricanes Irma and María for implementing an interdisciplinary case study methodology to understand and generate solutions to a variety of complex infrastructure challenges in a real-life setting. Project Based Learning (PBL) constitutes the theoretical model that frames this study. The sample included 23 undergraduate students, from architecture and engineering, and from three different campuses. All students completed a course sequence of 15 credits in design and construction of resilient and sustainable infrastructure. The results indicate that the program outcomes were achieved: development of interdisciplinary research skills and project design, hands-on solutions for real problems, awareness of human factors on project design, understanding of the importance and contribution of different disciplines and perspectives, and most important, developing the interest of putting into practice learned knowledge and skills in future projects. Students internalized the value of sustainability and resilience, in their coursework and future professionals, but also personally, applying these principles in their daily life. Students reported that their initial expectations about the program were either achieved or exceeded what they had foreseen. They considered a strength having three campuses and several disciplines working collaboratively.more » « less
-
The importance of authenticity has been examined in various aspects of education; this is especially true in the area of engineering education where most graduates will matriculate to industry. However, the importance of applied and authentic examples could be even more critical in workforce development programs. In these cases, students are often enrolled with a goal of using their acquired knowledge to advance their career or move into a new role. Purely theoretical or stylized examples would not be aligned with the educational goals of these students. As part of a National Science Foundation Advanced Technological Education grant, a certificate program in high value manufacturing (HVM) has been developed. The certificate program is a collaboration between a research intensive four-year institution and an urban community college. In this certificate program students will be taking courses in manufacturing processes, design, and other business-related subjects that are pertinent to the manufacture of low volume components that have high materials costs, stringent quality requirements, and critical project timelines. This unique content area requires example that comprise these pertinent aspects of HVM. This is particularly true of the five newly developed courses covering materials, project management, quality, logistics, and computer-aided design. While the analogous courses at a four-year degree granting institution would likely use stylized examples in these courses, this would not be preferable in an applied certificate program. This work discusses the acquisition and refinement of authentic and applied examples that are applicable to the HVM environment. Specifically, the use of industry contacts and the translation of examples into useable and appropriate examples are examined. These examples are detailed and compared to traditional stylized academic content. A methodology for examining student perceptions of these examples is also proposed. A discussion of the importance of authenticity in applied certificate programs is also presented.more » « less
-
The NSF S-STEM funded SPIRIT: Scholarship Program Initiative via Recruitment, Innovation, and Transformation program at Western Carolina University creates a new approach to the recruitment, retention, education, and placement of academically talented and financially needy engineering and engineering technology students. Twenty-seven new and continuing students were recruited into interdisciplinary cohorts that are being nurtured and developed in a community characterized by extensive peer and faculty mentoring, vertically integrated Project Based Learning (PBL), and undergraduate research experiences. The SPIRIT Scholar program attracted a diverse group of Engineering and Engineering Technology students, thus increasing the percentage of female and minority student participation as compared to the host department program demographics. Over the last academic year, fifty-four undergraduate research projects/activities were conducted by the twenty-seven scholars under the direction of twelve faculty fellows. Additionally, peer-to-peer mentorship and student leadership were developed through the program’s vertically integrated PBL model, which incorporated four courses and seven small-group design projects. Academic and professional support for the student scholars were administered through collaborations with several offices at the host institution, including an industry-engaged product development center. The program participants reported strong benefits from engaging in the program activities during the first year. Specifically, this paper presents results from the program activities, including: cohort recruitment and demographics; support services; undergraduate research; vertically integrated PBL activities; and the external review of the program. Similar programs may benefit from the findings and the external review report, which contained several accolades as well as suggestions for potential continuous improvement.more » « less
An official website of the United States government
