skip to main content


This content will become publicly available on November 6, 2024

Title: Thermal analysis of an α-Ga2O3 MOSFET using micro-Raman spectroscopy
The ultra-wide bandgap (UWBG) energy (∼5.4 eV) of α-phase Ga2O3 offers the potential to achieve higher power switching performance and efficiency than today's power electronic devices. However, a major challenge to the development of the α-Ga2O3 power electronics is overheating, which can degrade the device performance and cause reliability issues. In this study, thermal characterization of an α-Ga2O3 MOSFET was performed using micro-Raman thermometry to understand the device self-heating behavior. The α-Ga2O3 MOSFET exhibits a channel temperature rise that is more than two times higher than that of a GaN high electron mobility transistor (HEMT). This is mainly because of the low thermal conductivity of α-Ga2O3 (11.9 ± 1.0 W/mK at room temperature), which was determined via laser-based pump-probe experiments. A hypothetical device structure was constructed via simulation that transfer-bonds the α-Ga2O3 epitaxial structure over a high thermal conductivity substrate. Modeling results suggest that the device thermal resistance can be reduced to a level comparable to or even better than those of today's GaN HEMTs using this strategy combined with thinning of the α-Ga2O3 buffer layer. The outcomes of this work suggest that device-level thermal management is essential to the successful deployment of UWBG α-Ga2O3 devices.  more » « less
Award ID(s):
2234479
NSF-PAR ID:
10512812
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
AIP Publishing
Date Published:
Journal Name:
Applied Physics Letters
Volume:
123
Issue:
19
ISSN:
0003-6951
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Ultra-wide band gap semiconductor devices based on β-phase gallium oxide (Ga2O3) offer the potential to achieve higher switching performance and efficiency and lower manufacturing cost than that of today’s wide band gap power electronics. However, the most critical challenge to the commercialization of Ga2O3 electronics is overheating, which impacts the device performance and reliability. We fabricated a Ga2O3/4H–SiC composite wafer using a fusion-bonding method. A low-temperature (≤600 °C) epitaxy and device processing scheme was developed to fabricate MOSFETs on the composite wafer. The low-temperature-grown epitaxial Ga2O3 devices deliver high thermal performance (56% reduction in channel temperature) and a power figure of merit of (∼300 MW/cm2), which is the highest among heterogeneously integrated Ga2O3 devices reported to date. Simulations calibrated based on thermal characterization results of the Ga2O3-on-SiC MOSFET reveal that a Ga2O3/diamond composite wafer with a reduced Ga2O3 thickness (∼1 μm) and a thinner bonding interlayer (<10 nm) can reduce the device thermal impedance to a level lower than that of today’s GaN-on-SiC power switches. 
    more » « less
  2. In this study, we compared the transient self-heating behavior of a homoepitaxial β-Ga2O3 MOSFET and a GaN-on-Si HEMT using nanoparticle-assisted Raman thermometry and thermoreflectance thermal imaging. The effectiveness of bottom-side and double-side cooling schemes using a polycrystalline diamond substrate and a diamond passivation layer were studied via transient thermal modeling. Because of the low thermal diffusivity of β-Ga2O3, the use of a β-Ga2O3 composite substrate (bottom-side cooling) must be augmented by a diamond passivation layer (top-side cooling) to effectively cool the device active region under both steady-state and transient operating conditions. Without no proper cooling applied, the steady-state device-to-package thermal resistance of a homoepitaxial β-Ga2O3 MOSFET is 2.6 times higher than that for a GaN-on-Si HEMT. Replacing the substrate with polycrystalline diamond (under a 6.5 μm-thick β-Ga2O3 layer) could reduce the steady-state temperature rise by 65% compared to that for a homoepitaxial β-Ga2O3 MOSFET. However, for high frequency power switching applications beyond the ~102 kHz range, bottom-side cooling (integration with a high thermal conductivity substrate) does not improve the transient thermal response of the device. Adding a diamond passivation over layer diamond not only suppresses the steadystate temperature rise, but also drastically reduces the transient temperature rise under high frequency operating conditions. 
    more » « less
  3. Ultra-wide-bandgap (UWBG) semiconductors, such as Ga2O3 and diamond, have been attracting increasing attention owing to their potential to realize high-performance power devices with high breakdown voltage and low on-resistance beyond those of SiC and GaN. Among numerous UWBG semiconductors, this work focuses on the corundum-structured α-Ga2O3, which is a metastable polymorph of Ga2O3. The large bandgap energy of 5.3 eV, a large degree of freedom in band engineering, and availability of isomorphic p-type oxides to form a hetero p–n junction make α-Ga2O3 an attractive candidate for power device applications. Promising preliminary prototype device structures have been demonstrated without advanced edge termination despite the high dislocation density in the epilayers owing to the absence of native substrates and lattice-matched foreign substrates. In this Perspective, we present an overview of the research and development of α-Ga2O3 for power device applications and discuss future research directions.

     
    more » « less
  4. β-phase gallium oxide ( β-Ga2O3) has drawn significant attention due to its large critical electric field strength and the availability of low-cost high-quality melt-grown substrates. Both aspects are advantages over gallium nitride (GaN) and silicon carbide (SiC) based power switching devices. However, because of the poor thermal conductivity of β-Ga2O3, device-level thermal management is critical to avoid performance degradation and component failure due to overheating. In addition, for high-frequency operation, the low thermal diffusivity of β-Ga2O3 results in a long thermal time constant, which hinders the use of previously developed thermal solutions for devices based on relatively high thermal conductivity materials (e.g., GaN transistors). This work investigates a double-side diamond-cooled β-Ga2O3 device architecture and provides guidelines to maximize the device’s thermal performance under both direct current (dc) and high-frequency switching operation. Under high-frequency operation, the use of a β-Ga2O3 composite substrate (bottom-side cooling) must be augmented by a diamond passivation overlayer (top-side cooling) because of the low thermal diffusivity of β-Ga2O3. 
    more » « less
  5. null (Ed.)
    Abstract Gallium nitride (GaN) has emerged as one of the most attractive base materials for next-generation high-power and high-frequency electronic devices. Recent efforts have focused on realizing vertical power device structures such as in situ oxide, GaN interlayer based vertical trench metal–oxide–semiconductor field-effect transistors (OG-FETs). Unfortunately, the higher-power density of GaN electronics inevitably leads to considerable device self-heating which impacts device performance and reliability. Halide vapor-phase epitaxy (HVPE) is currently the most common approach for manufacturing commercial GaN substrates used to build vertical GaN transistors. Vertical device structures consist of GaN layers of diverse doping levels. Hence, it is of crucial importance to measure and understand how the dopant type (Si, Fe, and Mg), doping level, and crystal quality alter the thermal conductivity of HVPE-grown bulk GaN. In this work, a steady-state thermoreflectance (SSTR) technique was used to measure the thermal conductivity of HVPE-grown GaN substrates employing different doping schemes and levels. Structural and electrical characterization methods including X-ray diffraction (XRD), secondary-ion mass spectrometry (SIMS), Raman spectroscopy, and Hall-effect measurements were used to determine and compare the GaN crystal quality, dislocation density, doping level, and carrier concentration. Using this comprehensive suite of characterization methods, the interrelation among structural/electrical parameters and the thermal conductivity of bulk GaN substrates was investigated. While doping is evidenced to reduce the GaN thermal conductivity, the highest thermal conductivity (201 W/mK) is observed in a heavily Si-doped (1–5.00 × 1018 cm−3) substrate with the highest crystalline quality. This suggests that phonon-dislocation scattering dominates over phonon-impurity scattering in the tested HVPE-grown bulk GaN substrates. The results provide useful information for designing thermal management solutions for vertical GaN power electronic devices. 
    more » « less