Abstract Large stocks of soil carbon (C) and nitrogen (N) in northern permafrost soils are vulnerable to remobilization under climate change. However, there are large uncertainties in present‐day greenhouse gas (GHG) budgets. We compare bottom‐up (data‐driven upscaling and process‐based models) and top‐down (atmospheric inversion models) budgets of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) as well as lateral fluxes of C and N across the region over 2000–2020. Bottom‐up approaches estimate higher land‐to‐atmosphere fluxes for all GHGs. Both bottom‐up and top‐down approaches show a sink of CO2in natural ecosystems (bottom‐up: −29 (−709, 455), top‐down: −587 (−862, −312) Tg CO2‐C yr−1) and sources of CH4(bottom‐up: 38 (22, 53), top‐down: 15 (11, 18) Tg CH4‐C yr−1) and N2O (bottom‐up: 0.7 (0.1, 1.3), top‐down: 0.09 (−0.19, 0.37) Tg N2O‐N yr−1). The combined global warming potential of all three gases (GWP‐100) cannot be distinguished from neutral. Over shorter timescales (GWP‐20), the region is a net GHG source because CH4dominates the total forcing. The net CO2sink in Boreal forests and wetlands is largely offset by fires and inland water CO2emissions as well as CH4emissions from wetlands and inland waters, with a smaller contribution from N2O emissions. Priorities for future research include the representation of inland waters in process‐based models and the compilation of process‐model ensembles for CH4and N2O. Discrepancies between bottom‐up and top‐down methods call for analyses of how prior flux ensembles impact inversion budgets, more and well‐distributed in situ GHG measurements and improved resolution in upscaling techniques.
more »
« less
Increased Terrestrial Carbon Export and CO 2 Evasion From Global Inland Waters Since the Preindustrial Era
Abstract Global carbon dioxide (CO2) evasion from inland waters (rivers, lakes, and reservoirs) and carbon (C) export from land to oceans constitute critical terms in the global C budget. However, the magnitudes, spatiotemporal patterns, and underlying mechanisms of these fluxes are poorly constrained. Here, we used a coupled terrestrial–aquatic model to assess how multiple changes in climate, land use, atmospheric CO2concentration, nitrogen (N) deposition, N fertilizer and manure applications have affected global CO2evasion and riverine C export along the terrestrial‐aquatic continuum. We estimate that terrestrial C loadings, riverine C export, and CO2evasion in the preindustrial period (1800s) were 1,820 ± 507 (mean ± standard deviation), 765 ± 132, and 841 ± 190 Tg C yr−1, respectively. During 1800–2019, multifactorial global changes caused an increase of 25% (461 Tg C yr−1) in terrestrial C loadings, reaching 2,281 Tg C yr−1in the 2010s, with 23% (104 Tg C yr−1) of this increase exported to the ocean and 59% (273 Tg C yr−1) being emitted to the atmosphere. Our results showed that global inland water recycles and exports nearly half of the net land C sink into the atmosphere and oceans, highlighting the important role of inland waters in the global C balance, an amount that should be taken into account in future C budgets. Our analysis supports the view that a major feature of the global C cycle–the transfer from land to ocean–has undergone a dramatic change over the last two centuries as a result of human activities.
more »
« less
- Award ID(s):
- 1903722
- PAR ID:
- 10512962
- Publisher / Repository:
- AGU
- Date Published:
- Journal Name:
- Global Biogeochemical Cycles
- Volume:
- 37
- Issue:
- 10
- ISSN:
- 0886-6236
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The northern permafrost region has been projected to shift from a net sink to a net source of carbon under global warming. However, estimates of the contemporary net greenhouse gas (GHG) balance and budgets of the permafrost region remain highly uncertain. Here, we construct the first comprehensive bottom‐up budgets of CO2, CH4, and N2O across the terrestrial permafrost region using databases of more than 1000 in situ flux measurements and a land cover‐based ecosystem flux upscaling approach for the period 2000–2020. Estimates indicate that the permafrost region emitted a mean annual flux of 12 (−606, 661) Tg CO2–C yr−1, 38 (22, 53) Tg CH4–C yr−1, and 0.67 (0.07, 1.3) Tg N2O–N yr−1to the atmosphere throughout the period. Thus, the region was a net source of CH4and N2O, while the CO2balance was near neutral within its large uncertainties. Undisturbed terrestrial ecosystems had a CO2sink of −340 (−836, 156) Tg CO2–C yr−1. Vertical emissions from fire disturbances and inland waters largely offset the sink in vegetated ecosystems. When including lateral fluxes for a complete GHG budget, the permafrost region was a net source of C and N, releasing 144 (−506, 826) Tg C yr−1and 3 (2, 5) Tg N yr−1. Large uncertainty ranges in these estimates point to a need for further expansion of monitoring networks, continued data synthesis efforts, and better integration of field observations, remote sensing data, and ecosystem models to constrain the contemporary net GHG budgets of the permafrost region and track their future trajectory.more » « less
-
Coastal tidal wetlands and estuaries play important roles in the global carbon budget by contributing to the net withdrawal of CO2from the atmosphere. We quantified the linkages between terrestrial and oceanic systems, marsh-to-bay carbon exchange, and the uptake of CO2from the atmosphere in the wetland-dominated Plum Island Sound (MA, USA) and Duplin River (GA, USA) estuaries. The C budgets revealed that autotrophic marshes [primary production:ecosystem respiration (P:R) ~1.3:1] are tightly coupled to heterotrophic aquatic systems (P:R ~0.6:1). Levels of marsh gross primary production are similar in these systems (865 ± 39 and 768 ± 74 gC m−2year−1in Plum Island and the Duplin, respectively) even though they are in different biogeographic provinces. In contrast to inputs from rivers and coastal oceans, tidal marshes are the dominant source of allochthonous matter that supports heterotrophy in aquatic systems. Dissolved inorganic carbon (DIC) exported from marshes to the coastal ocean was a major flux pathway in the Duplin River; however, there was no evidence of DIC export from Plum Island marshes and only minor export to the ocean. Burial was a sink for 53% of marsh net ecosystem production (NEP) on Plum Island, but only 19% of marsh NEP in the Duplin. Burial was the dominant blue carbon sequestration pathway at Plum Island, whereas in the Duplin, DIC and organic carbon export to the ocean were equally important. Regional- and continental-scale C budgets should better reflect wetland-dominated systems to more accurately characterize their contribution to global CO2sequestration.more » « less
-
Abstract The Arctic–Boreal Zone is rapidly warming, impacting its large soil carbon stocks. Here we use a new compilation of terrestrial ecosystem CO2fluxes, geospatial datasets and random forest models to show that although the Arctic–Boreal Zone was overall an increasing terrestrial CO2sink from 2001 to 2020 (mean ± standard deviation in net ecosystem exchange, −548 ± 140 Tg C yr−1; trend, −14 Tg C yr−1;P < 0.001), more than 30% of the region was a net CO2source. Tundra regions may have already started to function on average as CO2sources, demonstrating a shift in carbon dynamics. When fire emissions are factored in, the increasing Arctic–Boreal Zone sink is no longer statistically significant (budget, −319 ± 140 Tg C yr−1; trend, −9 Tg C yr−1), and the permafrost region becomes CO2neutral (budget, −24 ± 123 Tg C yr−1; trend, −3 Tg C yr−1), underscoring the importance of fire in this region.more » « less
-
Abstract Lentic systems (lakes and reservoirs) are emission hotpots of nitrous oxide (N2O), a potent greenhouse gas; however, this has not been well quantified yet. Here we examine how multiple environmental forcings have affected N2O emissions from global lentic systems since the pre-industrial period. Our results show that global lentic systems emitted 64.6 ± 12.1 Gg N2O-N yr−1in the 2010s, increased by 126% since the 1850s. The significance of small lentic systems on mitigating N2O emissions is highlighted due to their substantial emission rates and response to terrestrial environmental changes. Incorporated with riverine emissions, this study indicates that N2O emissions from global inland waters in the 2010s was 319.6 ± 58.2 Gg N yr−1. This suggests a global emission factor of 0.051% for inland water N2O emissions relative to agricultural nitrogen applications and provides the country-level emission factors (ranging from 0 to 0.341%) for improving the methodology for national greenhouse gas emission inventories.more » « less
An official website of the United States government

