skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Effect of Liquid Hydrogen Tank Size on Self-Pressurization and Constant-Pressure Venting
Hydrogen represents a promising renewable fuel, and its broad application can lead to drastic reductions in greenhouse gas emissions. Keeping hydrogen in liquid form helps achieve high energy density, but also requires cryogenic conditions for storage as hydrogen evaporates at temperatures of about 20 K, which can lead to a large pressure build-up in the tank. This paper addresses the unsteady thermal modeling of cryogenic tanks with liquid hydrogen. Considering the liquid and vapor phases in the tank as two nodes with averaged properties, a lumped-element method of low computational cost is developed and used for simulating two regimes: self-pressurization (also known as autogenous pressurization, or pressure build-up in the closed tank due to external heat leaks) and constant-pressure venting (when some hydrogen is let out of the tank to maintain pressure at a fixed level). The model compares favorably (within several percent for pressure) to experimental observations for autogenous pressurization in a NASA liquid hydrogen tank. The two processes of interest in this study are numerically investigated in tanks of similar shapes but different sizes ranging from about 2 to 1200 m3. Pressure and temperature growth rates are characterized in closed tanks, where the interfacial mass transfer manifests initial condensation followed by more pronounced evaporation. In tanks where pressure is kept fixed by venting some hydrogen from the vapor domain of the tank, the initial venting rate significantly exceeds evaporation rate, but after a settling period, magnitudes of both rates approach each other and continue evolving at a slower pace. The largest tank demonstrates a six-times-lower pressure rise than the smallest tank over a 100 h period. The relative boil-off losses in continuously vented tanks are found to be approximately proportional to the inverse of the tank diameter, thus generally following simple Galilean scaling with a few percent deviation due to scale effects. The model developed in this work is flexible for analyzing a variety of processes in liquid hydrogen storage systems, raising efficiencies, which is critically important for a future economy based on renewable energy.  more » « less
Award ID(s):
2214235
PAR ID:
10512998
Author(s) / Creator(s):
;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Hydrogen
Volume:
4
Issue:
3
ISSN:
2673-4141
Page Range / eLocation ID:
444 to 455
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Hydrogen can become a prevalent renewable fuel in the future green economy, but technical and economic hurdles associated with handling hydrogen must be overcome. To store and transport hydrogen in an energy-dense liquid form, very cold temperatures, around 20 K, are required. Evaporation affects the achievable mass flow rate during the high-speed transfer of hydrogen at large pressure differentials, and accurate prediction of this process is important for the practical design of hydrogen transfer systems. Computational fluid dynamics modeling of two-phase hydrogen flow is carried out in the present study using the volume-of-fluid method and the Lee relaxation model for the phase change. Suitable values of the relaxation time parameter are determined by comparing numerical results with test data for high-speed two-phase hydrogen flows in a configuration involving a tube with sudden expansion, which is common in practical systems. Simulations using a variable outlet pressure are conducted to demonstrate the dependence of flow rates on the driving pressure differential, including the attainment of the critical flow regime. Also shown are computational results for flows with various inlet conditions and a fixed outlet state. Field distributions of the pressure, velocity, and vapor fractions are presented for several flow regimes. 
    more » « less
  2. Abstract Green hydrogen produced using renewable electricity could play an important role in a clean energy future. This paper seeks to analyze the techno-economic performance of integrated wind and hydrogen systems under different conditions. A co-located wind and hydrogen hybrid system is optimized to reduce the total system cost. We have adopted and improved a state-of-the-art techno-economic tool REopt, developed by the National Renewable Energy Laboratory (NREL), for optimal planning of the integrate energy system (IES). In addition to wind and electrolyzer components, we have also considered battery energy storage, hydrogen tank, and hydrogen fuel cell in the IES. The results show that (i) adding electrolyzers to the grid-connected wind energy system could reduce the total system cost by approximately 8.9%, and (ii) adding electrolyzers, hydrogen tank, and hydrogen fuel cells could reduce the total system cost by approximately 30%. 
    more » « less
  3. Taconis oscillations represent excitation of acoustic modes due to large thermal gradients inside narrow tubes penetrating cryogenic vessels from a warm ambient environment. These oscillations are usually harmful, as they may drastically increase heat leakage into cryogenic vessels and result in strong vibrations of measuring instruments. Placing a porous material inside a tube with a goal to increase acoustic damping or attaching a small resonator to the main tube are some of the possible ways to suppress or mitigate Taconis effects. However, when the porous inserts are positioned in locations with large temperature gradients or the resonator parameters are selected incorrectly, these components may augment thermal-to-acoustic energy conversion and enhance Taconis oscillations. A low-amplitude thermoacoustic model has been extended and applied in this study to determine the effects of the insert location and pore radius, as well as the resonator dimensions, on the onset of Taconis phenomena in a hydrogen-filled tube of relevance to lines used in cryogenic hydrogen storage tanks. The presented findings can assist cryogenic specialists interested in suppressing or exciting Taconis oscillations. 
    more » « less
  4. Marine crustaceans produce broadband sounds that have been mostly characterized in tanks. While tank physical impacts on such signals are documented in the acoustic community, they are overlooked in the bioacoustic literature with limited empirical comparisons. Here, we compared broadband sounds produced at 1 m from spiny lobsters (Panulirus argus) in both tank and in situ conditions. We found significant differences in all sound features (temporal, power, and spectral) between tank and in situ recordings, highlighting that broadband sounds, such as those produced by marine crustaceans, cannot be accurately characterized in tanks. We then explained the three main physical impacts that distort broadband sounds in tanks, respectively known as resonant frequencies, sound reverberation, and low frequency attenuation. Tank resonant frequencies strongly distort the spectral shape of broadband sounds. In the high frequency band (above the tank minimum resonant frequency), reverberation increases sound duration. In the low frequency band (below the tank minimum resonant frequency), low frequencies are highly attenuated due to their longer wavelength compared to the tank size and tank wall boundary conditions (zero pressure) that prevent them from being accurately measured. Taken together, these results highlight the importance of understanding tank physical impacts when characterizing broadband crustacean sounds. 
    more » « less
  5. Altering soil wettability by inclusion of hydrophobicity could be an effective way to restrict evaporation from soil, thereby conserving water resources. In this study, 4-μL sessile water droplets were evaporated from an artificial soil millipore comprised of three glass (i.e. hydrophilic) and Teflon (i.e. hydrophobic) 2.38-mm-diameter beads. The distance between the beads were kept constant (i.e. center-to-center spacing of 3.1 mm). Experiments were conducted in an environmental chamber at an air temperature of 20°C and 30% and 75% relative humidity (RH). Evaporation rates were faster (i.e. ∼19 minutes and ∼49 minutes at 30% and 75% RH) from hydrophilic pores than the Teflon one (i.e. ∼24 minutes and ∼52 minutes at 30% and 75% RH) due in part to greater air-water contact area. Rupture of liquid droplets during evaporation was analyzed and predictions were made on rupture based on contact line pinning and depinning, projected surface area just before rupture, and pressure difference across liquid-vapor interface. It was observed that, in hydrophilic pore, the liquid droplet was pinned on one bead and the contact line on the other beads continuously decreased by deforming the liquid-vapor interface, though all three gas-liquid-solid contact lines decreased at a marginal rate in hydrophobic pore. For hydrophilic and hydrophobic pores, approximately 1.7 mm2 and 1.8–2 mm2 projected area of the droplet was predicted at 30% and 75% RH just before rupture occurs. Associated pressure difference responsible for rupture was estimated based on the deformation of curvature of liquid-vapor interface. 
    more » « less