Vapor-liquid equilibrium (VLE) is a family of first-principled thermodynamic models for transcritical multiphase flows, which can accurately capture the phase transitions at high-pressure conditions that are difficult to deal with using other models. However, VLE-based computational fluid dynamics (CFD) simulation is computationally very expensive for multi-component systems, which severely limits its applications to real-world systems. In this work, we developed a new ISAT-VLE method based on the in situ adaptive tabulation (ISAT) method to improve the computational efficiency of VLE-based CFD simulation with reduced memory usage. We developed several ISAT-VLE solvers for both fully conservative (FC) and double flux (DF) schemes. New methods are proposed to delete redundant records in the ISAT-VLE table and the ISAT-VLE method performance is further improved. To improve the convergence of the VLE solvers, a modified initial guess for equilibrium constant is also introduced. Simulations of high-pressure transcritical two-phase temporal mixing layers and shock-droplet interaction were conducted using the ISAT-VLE CFD solvers. The simulation results show that the new method obtains a speed-up factor approximately from 10 to 60 and the ISAT errors can be controlled within 1%. The shock-droplet interaction results show that the DF scheme can achieve a higher speed-up factor than the FC scheme. The two sets of simulations exhibit the phase separation at high-pressure conditions. It was found that even at supercritical pressures with respect to each component, the droplet surface could still be in a subcritical two-phase state, because the mixture critical pressure is often significantly higher than each component and hence triggers phase separation. In addition, a shock wave could partially or completely convert the droplet surface from a subcritical two-phase state to a single-phase state by raising temperature and pressure.
more »
« less
Computational Modeling of High-Speed Flow of Two-Phase Hydrogen through a Tube with Abrupt Expansion
Hydrogen can become a prevalent renewable fuel in the future green economy, but technical and economic hurdles associated with handling hydrogen must be overcome. To store and transport hydrogen in an energy-dense liquid form, very cold temperatures, around 20 K, are required. Evaporation affects the achievable mass flow rate during the high-speed transfer of hydrogen at large pressure differentials, and accurate prediction of this process is important for the practical design of hydrogen transfer systems. Computational fluid dynamics modeling of two-phase hydrogen flow is carried out in the present study using the volume-of-fluid method and the Lee relaxation model for the phase change. Suitable values of the relaxation time parameter are determined by comparing numerical results with test data for high-speed two-phase hydrogen flows in a configuration involving a tube with sudden expansion, which is common in practical systems. Simulations using a variable outlet pressure are conducted to demonstrate the dependence of flow rates on the driving pressure differential, including the attainment of the critical flow regime. Also shown are computational results for flows with various inlet conditions and a fixed outlet state. Field distributions of the pressure, velocity, and vapor fractions are presented for several flow regimes.
more »
« less
- Award ID(s):
- 2214235
- PAR ID:
- 10513002
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Hydrogen
- Volume:
- 5
- Issue:
- 1
- ISSN:
- 2673-4141
- Page Range / eLocation ID:
- 14 to 28
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Heat transfer and pumping power of water-cooled thermal management systems (TMSs) for lithium-ion batteries (LIBs) in electric vehicles (EVs) are investigated through a three-dimensional computational approach. TMSs are cylindrical shells that cover LIBs. Water flows through the shell and removes heat from LIBs. The focus of this study is to provide practical insights on the effects of number of inlets on the thermal performance and pumping power of TMSs. Two TMSs with one and four inlets at the top of the TMS’s case are considered. Both TMSs include one outlet, which is located at the bottom of the case. The thermal performance of individual TMSs is evaluated by the maximum temperature of the battery cell and the temperature difference across the cell. The thermal performances are described based on the pumping power. Simulations are performed at different flow rates within a laminar regime. Results indicate that both TMSs provide safe operational temperatures for LIBs. However, compared to the one-inlet design, the four-inlet TMS archives the same thermal performance but at a lower pumping power. The lower pumping power is due to lower pressure drop in the four-inlet TMS resulting from flowing water with lower flow rate at individual inlets, and through a shorter path from individual inlets to the outlet, compared with the one-inlet TMS. Minimizing pumping power without any penalty in the thermal performance is significantly beneficial, especially when the TMS is used for a pack of LIBs in EVs.more » « less
-
Abstract We develop original flow-based methods to interrogate and manipulate out-of-equilibrium behaviour of ternary fluids systems at the small scale. In particular, we examine droplet and jet formation of ternary fluid systems in coaxial microchannels when an aqueous phase is injected into a solvent-rich oil phase using common fluids, such as ethanol for the aqueous phase, silicone oil for the oil phase and isopropanol for the solvent. Alcohols are often employed to impart oil and water properties with a myriad of practical uses as extractants, antiseptics, wetting agents, emulsifiers or biofuels. Here, we systematically examine the role of alcohol solvents on the hydrodynamic stability of aqueous–oil multiphase flows in square microchannels. Broad variations of flow rates and solvent concentration reveal a variety of intriguing droplet and jet flow regimes in the presence of spontaneous emulsification phenomena and significant mass transfer across the fluid interface. Typical flow patterns include dripping and jetting droplets, phase inversion and dynamic wetting and conjugate jets. Functional relationships are developed to model the evolution of multiphase flow characteristics with solvent concentration. This work provides insights into complex natural phenomena relevant to the application of microfluidic droplet systems to chemical assays as well as fluid measurement and characterisation technologies.more » « less
-
Flow-blurring atomization is an innovative twin-fluid atomization approach that has demonstrated superior effectiveness in producing fine sprays compared to traditional airblast atomization methods. In flow-blurring atomizers, the high-speed gas flow is directed perpendicular to the liquid jet. Under specific geometric and physical conditions, the gas penetrates back into the liquid nozzle, resulting in a highly unsteady bubbly two-phase mixing zone. Despite the remarkable atomization performance of flow-blurring atomizers, the underlying dynamics of the two-phase flows and breakup mechanisms within the liquid nozzle remain poorly understood, primarily due to the challenges in experimental measurements of flow details. In this study, detailed interface-resolved numerical simulations are conducted to investigate the two-phase flows generated by a planar flow-blurring atomizer. By varying key dimensionless parameters, including the dynamic-pressure ratio, density ratio, and Weber number, over wide ranges, we aim to comprehensively characterize their effects on the two-phaseflow regimes and breakup dynamics.more » « less
-
Fluid polyamorphism, the existence of multiple amorphous fluid states in a single-component system, has been observed or predicted in a variety of substances. A remarkable example of this phenomenon is the fluid–fluid phase transition (FFPT) in high-pressure hydrogen between insulating and conducting high-density fluids. This transition is induced by the reversible dimerization/dissociation of the molecular and atomistic states of hydrogen. In this work, we present the first attempt to thermodynamically model the FFPT in hydrogen at extreme conditions. Our predictions for the phase coexistence and the reaction equilibrium of the two alternative forms of fluid hydrogen are based on experimental data and supported by the results of simulations. Remarkably, we find that the law of corresponding states can be utilized to construct a unified equation of state combining the available computational results for different models of hydrogen and the experimental data.more » « less
An official website of the United States government

