Abstract Zero‐dimensional (0D) organic metal halide hybrids (OMHHs) have recently emerged as a new class of light emitting materials with exceptional color tunability. While near‐unity photoluminescence quantum efficiencies (PLQEs) are routinely obtained for a large number of 0D OMHHs, it remains challenging to apply them as emitter for electrically driven light emitting diodes (LEDs), largely due to the low conductivity of wide bandgap organic cations. Here, the development of a new OMHH, triphenyl(9‐phenyl‐9H‐carbazol‐3‐yl) phosphonium antimony bromide (TPPcarzSbBr4), as emitter for efficient LEDs, which consists of semiconducting organic cations (TPPcarz+) and light emitting antimony bromide anions (Sb2Br82−), is reported. By replacing one of the phenyl groups in a well‐known tetraphenylphosphonium cation (TPP+) with an electroactive phenylcarbazole group, a semiconducting TPPcarz+cation is developed for the preparation of red emitting 0D TPPcarzSbBr4single crystals with a high PLQE of 93.8%. With solution processed TPPcarzSbBr4thin films (PLQE of 86.1%) as light emitting layer, red LEDs are fabricated to exhibit an external quantum efficiency (EQE) of 5.12%, a peak luminance of 5957 cd m−2, and a current efficiency of 14.2 cd A−1, which are the best values reported to date for electroluminescence devices based on 0D OMHHs.
more »
« less
Demonstration of Near‐Size‐Independent External Quantum Efficiency for 368 nm UV Micro‐LEDs
UV‐ranged micro‐LEDs are being explored for numerous applications due to their high stability and power efficiency. However, previous reports have shown reduced external quantum efficiency (EQE) and increased leakage current due to the increase in surface‐to‐volume ratio with a decrease in the micro‐LED size. Herein, the size‐related performance for UV‐A micro‐LEDs, ranging from 8 × 8 to 100 × 100 μm2, is studied. These devices exhibit reduced leakage current with the implementation of atomic layer deposition‐based sidewall passivation. A systematic EQE comparison is performed with minimal leakage current and a size‐independent on‐wafer EQE of around 5.5% is obtained. Smaller sized devices experimentally show enhanced EQE at high current density due to their improved heat dissipation capabilities. To the best of authors’ knowledge, this is the highest reported on‐wafer EQE demonstrated in <10 μm dimensioned 368 nm UV LEDs.
more »
« less
- Award ID(s):
- 2338683
- PAR ID:
- 10513172
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- physica status solidi (RRL) – Rapid Research Letters
- ISSN:
- 1862-6254
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We report on the illustration of the first electron blocking layer (EBL) free AlInN nanowire light-emitting diodes (LEDs) operating in the deep ultraviolet (DUV) wavelength region (sub-250 nm). We have systematically analyzed the results using APSYS software and compared with simulated AlGaN nanowire DUV LEDs. From the simulation results, significant efficiency droop was observed in AlGaN based devices, attributed to the significant electron leakage. However, compared to AlGaN nanowire DUV LEDs at similar emission wavelength, the proposed single quantum well (SQW) AlInN based light-emitters offer higher internal quantum efficiency without droop up to current density of 1500 A/cm2and high output optical power. Moreover, we find that transverse magnetic polarized emission is ∼ 5 orders stronger than transverse electric polarized emission at 238 nm wavelength. Further research shows that the performance of the AlInN DUV nanowire LEDs decreases with multiple QWs in the active region due to the presence of the non-uniform carrier distribution in the active region. This study provides important insights on the design of new type of high performance AlInN nanowire DUV LEDs, by replacing currently used AlGaN semiconductors.more » « less
-
The effect of doping in the drift layer and the thickness and extent of extension beyond the cathode contact of a NiO bilayer in vertical NiO/β-Ga2O3 rectifiers is reported. Decreasing the drift layer doping from 8 × 1015 to 6.7 × 1015 cm−3 produced an increase in reverse breakdown voltage (VB) from 7.7 to 8.9 kV, the highest reported to date for small diameter devices (100 μm). Increasing the bottom NiO layer from 10 to 20 nm did not affect the forward current–voltage characteristics but did reduce reverse leakage current for wider guard rings and reduced the reverse recovery switching time. The NiO extension beyond the cathode metal to form guard rings had only a slight effect (∼5%) in reverse breakdown voltage. The use of NiO to form a pn heterojunction made a huge improvement in VB compared to conventional Schottky rectifiers, where the breakdown voltage was ∼1 kV. The on-state resistance (RON) was increased from 7.1 m Ω cm2 in Schottky rectifiers fabricated on the same wafer to 7.9 m Ω cm2 in heterojunctions. The maximum power figure of merit (VB)2/RON was 10.2 GW cm−2 for the 100 μm NiO/Ga2O3 devices. We also fabricated large area (1 mm2) devices on the same wafer, achieving VB of 4 kV and 4.1 A forward current. The figure-of-merit was 9 GW cm−2 for these devices. These parameters are the highest reported for large area Ga2O3 rectifiers. Both the small area and large area devices have performance exceeding the unipolar power device performance of both SiC and GaN.more » « less
-
Morkoç, Hadis; Fujioka, Hiroshi; Schwarz, Ulrich T. (Ed.)Although AlGaN-based deep ultraviolet (UV) light-emitting diodes (LEDs) have been studied extensively, their quantum efficiency and optical output power still remain extremely low compared to the InGaN-based visible color LEDs. Electron leakage has been identified as one of the most possible reasons for the low internal quantum efficiency (IQE) in AlGaN based UV LEDs. The integration of a p-doped AlGaN electron blocking layer (EBL) or/and increasing the conduction band barrier heights with prompt utilization of higher Al composition quantum barriers (QBs) in the LED could mitigate the electron leakage problem to an extent, but not completely. In this context, we introduce a promising approach to alleviate the electron overflow without using EBL by utilizing graded concave QBs instead of conventional QBs in AlGaN UV LEDs. Overall, the carrier transportation, confinement capability and radiative recombination are significantly improved. As a result, the IQE, and output power of the proposed concave QB LED were enhanced by ~25.4% and ~25.6% compared to the conventional LED for emission at ~254 nm, under 60 mA injection current.more » « less
-
Abstract Emissive displays based on light‐emitting diodes (LEDs), with high pixel density, luminance, efficiency, and large color gamut, are of great interest for applications such as watches, phones, and virtual displays. The high pixel density requirements of some emissive displays require a particular class of LEDs that are sub‐20‐micrometers in length, called micro‐LEDs. While state‐of‐the‐art emissive displays incorporate organic LEDs, an alternative is inorganic III‐nitride LEDs with potential reliability and efficiency benefits. Here we explore the performance, challenges, and prospective outcomes for III‐nitride micro‐LEDs to produce efficient emissive displays and provide insight to advance this technology. Calculations are performed to determine the operating points for the micro‐LEDs and the efficiency of the overall emissive display. It is shown that III‐nitride micro‐LEDs suffer from some of the same problems as their larger‐sized solid‐state lighting LED cousins; however, the operating conditions of micro‐LEDs can result in different challenges and research efforts. These challenges include improving efficiency at low current densities; improving the efficiency of longer wavelength (green and red) LEDs; and creating device designs that can overcome low coupling efficiency, high surface recombination, and display assembly difficulties.more » « less
An official website of the United States government
