skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Fusing Model-Driven and Data-Driven Approaches for GMD Mitigation
The operation of the electric power grid is foundational to the health, safety, and economic well-being of the nation, yet it is increasingly fragile and exposed to risk from exogenous factors. When power disruptions are widespread, prolonged, or impact critical services, the consequences can be grave. GMDs) can impact electric power transmission grids through premature ageing and transformer failure, which can lead to cascading failures and extended power disruptions. Geomagnetically induced currents (GICs) arising from geomagnetic disturbances (GMD mitigation poses a challenging problem to grid operators due to the nature of its impact. Space weather events arising from solar coronal mass ejections (CMEs) that intersect Earth's orbit occur on a continuum of timescales and levels of severity. Moderately sized CMEs, such as the 1989 event that lead to the failure of the HydroQuebec system, illustrate the risk to the power grid. Even larger space weather events that have the potential for profound impacts and prolonged power disruptions on a continental scale are thought to happen approximately storm has occurred during the existence of electric infrastructure. At the other end of the severity spectrum, recent evidence has shown that GICs flow at low levels continuously on the grid even in the every one hundred years; however, no such absence of a solar storm. This behavior may cause eventual, but slow to manifest breakdown of grid assets misattributed to non-GMD causes. In either case, it is difficult for utilities to justify the costly installation of sensors and telemetry to monitor this phenomenon. This paper details a system to augment human operators with two new abilities—(1) the real-time prediction of GICs flowing on their system and (2) the real-time monitoring of GMD grid manifestations—without installing new sensors. The system will do this by fusing a “top-down” approach using physics-based modeling driven by detailed 3-D Earth conductivity measurements and real-time magnetic observatory data with a “bottom-up” approach using artificial intelligence techniques driven by synchrophasor data. This hybrid methodology will enable utility operators to identify the best strategies to modify grid voltages and topology to mitigate damage and deal with a changing federal regulatory framework that requires GMD monitoring and mitigation efforts.  more » « less
Award ID(s):
1720175
PAR ID:
10513341
Author(s) / Creator(s):
; ;
Publisher / Repository:
https://cigre-usnc.org/wp-content/uploads/2017/10/C4_Murphy.pdf
Date Published:
Journal Name:
CIGRE US National Committee 2017 Grid of the Future Symposium
Format(s):
Medium: X
Location:
Paris, France.
Sponsoring Org:
National Science Foundation
More Like this
  1. Current efforts to assess risk to the power grid from geomagnetic disturbances (GMDs) that result in geomagnetically induced currents (GICs) seek to identify potential "hotspots," based on statistical models of GMD storm scenarios and power distribution grounding models that assume that the electrical conductivity of the Earth's crust and mantle varies only with depth. The NSF-supported EarthScope Magnetotelluric (MT) Program operated by Oregon State University has mapped 3-D ground electrical conductivity structure across more than half of the continental US. MT data, the naturally occurring time variations in the Earth’s vector electric and magnetic fields at ground level, are used to determine the MT impedance tensor for each site (the ratio of horizontal vector electric and magnetic fields at ground level expressed as a complex-valued frequency domain quantity). The impedance provides information on the 3-D electrical conductivity structure of the Earth’s crust and mantle. We demonstrate that use of 3-D ground conductivity information significantly improves the fidelity of GIC predictions over existing 1-D approaches. We project real-time magnetic field data streams from US Geological Survey magnetic observatories into a set of linear filters that employ the impedance data and that generate estimates of ground level electric fields at the locations of MT stations. The resulting ground electric fields are projected to and integrated along the path of power transmission lines. This serves as inputs to power flow models that represent the power transmission grid, yielding a time-varying set of quasi-real-time estimates of reactive power loss at the power transformers that are critical infrastructure for power distribution. We demonstrate that peak reactive power loss and hence peak risk for transformer damage from GICs does not necessarily occur during peak GMD storm times, but rather depends on the time-evolution of the polarization of the GMD’s inducing fields and the complex ground (3-D) electric field response, and the resulting alignment of the ground electric fields with the power transmission line paths. This is informing our efforts to provide a set of real-time tools for power grid operators to use in mitigating damage from space weather events. 
    more » « less
  2. Cherifi, H; Donduran, M; Rocha, LM; Cherifi, C; Varol, O (Ed.)
    Long power outages caused by weather can have a big impact on the economy, infrastructure, and quality of life in affected areas. It’s hard to provide early and accurate warnings for these disruptions because severe weather often leads to missing weather recordings, making it difficult to make learning-based predictions. To address this challenge, we have developed HMN-RTS, a hierarchical multiplex network that classifies disruption severity by temporal learning from integrated weather recordings and social media posts. This new framework’s multiplex network layers gather information about power outages, weather, lighting, land cover, transmission lines, and social media comments. Our study shows that this method effectively improves the accuracy of predicting the duration of weather-related outages. The HMN-RTS model improves 3 h ahead outage severity prediction, resulting in a 0.76 macro F1-score vs 0.51 for the best alternative for a five-class problem formulation. The HMN-RTS model provides useful predictions of outage duration 6 h ahead, enabling grid operators to implement outage mitigation strategies promptly. The results highlight the HMN-RTS’s ability to offer early, reliable, and efficient risk assessment. 
    more » « less
  3. The National Space Weather Action Plan, NERC Reliability Standard TPL-007-1,2 associated FERC Orders 779, 830 and subsequent actions, emerging standard TPL-007-3, as well as Executive Order 13744 have prepared the regulatory framework and roadmap for assessing and mitigating the impact on critical infrastructure from space weather. These actions have resulted in an emerging set of benchmarks against which the statistical probability of damage to critical components such as power transmission system high-voltage transformers can be assessed; for the first time the impacts on the intensity of geomagnetically induced currents (GICs) due to the spatial variability of the geomagnetic field and of the Earth’s electrical conductivity structure can be examined systematically. While at present not a strict requirement of the existing reliability standards, there is growing evidence that the strongly three-dimensional nature of the electrical conductivity structure of the North American crust and mantle (heretofore ‘ground conductivity’) has a first-order impact on GIC intensity, with considerable local and regional variability. The strongly location dependent ground electric field intensification and attenuation due to 3-D ground conductivity variations has an equivalent impact on assessment of risk to critical infrastructure due to HEMP (E3 phase) sources of geomagnetic disturbances (GMDs) as it does for natural GMDs. From 2006-2018, Oregon State University (OSU) under NSF EarthScope Program support, installed and acquired ground electric and magnetic field time series (magnetotelluric, or MT) data on a grid of station locations spaced ~70-km apart, at 1161 long-period MT stations covering nearly ⅔ of CONUS. The US Geological Survey completed 47 additional MT stations using functionally identical instrumentation, and the two data sets were merged and made available in the public domain. OSU and its project collaborators have also collected hundreds of wider frequency bandwidth, more densely-spaced MT station data under other project support, and these have been or will be released for public access in the near future. NSF funding was not available to make possible collection of EarthScope MT data 1/3 of CONUS in the southern tier of states, in a band from central California in the west to Alabama in the east and extending along the Gulf Coast and Deep South. OSU, with NASA support just received, plans to complete MT station installation in the remainder of California this year, and with additional support both anticipated and proposed, we hope to complete the MT array in the remainder of CONUS. For this first time this will provide national-scale 3-D electrical conductivity/MT impedance data throughout the US portion of the contiguous North American power grid. Complementary planning and proposal efforts are underway in Canada, including collaborations between OSU, Athabasca University and other Canadian academic and industry groups. In the present work, we apply algorithms we have developed to make use of real-time streams of US Geological Survey, Natural Resources Canada (and other) magnetic observatory data, and the EarthScope and other MT data sets to provide quasi-real time predictions of the geomagnetically induced voltages at high-voltage transmission system transformers/power buses. This goes beyond the statistical benchmarking process currently encapsulated in NERC reliability standards. We seek initially to provide real-time information to power utility control room operators, in the form of a heat map showing which assets are likely experiencing stress due to induced currents. These assessments will be ground-truthed against transmission system sensor data (PMUs, GIC monitors, voltage waveforms and harmonics where available), and by applying machine learning methods we hope to extend this approach to transmission systems that have sparse or non-existent GIC monitoring sensor infrastructure. Ultimately by incorporating predictive models of the geomagnetic field using satellite data as inputs rather than real-time ground magnetic field measurements, a near-term probabilistic assessment of risk to transformers may be possible, ideally providing at least a 15-minute forecast to utility operators. There has been a concerted effort by NOAA to develop a real-time geomagnetically induced ground electric field data product that makes use of our EarthScope MT data, which includes the strong impacts on GICs due to 3-D ground conductivity structure. Both OSU and the USGS have developed methods to determine the GIC-related voltages at substations by integrating the ground electric fields along power transmission line paths. Under National Science Foundation support, the present team of investigators is taking the next step, of applying the GIC-related voltages as inputs to quasi-real time power flow models of the power transmission grid in order to obtain realistic and verifiable predictions of the intensity of induced GICs, the reactive power loss due to GICs, and of GIC effects on the current and voltage waveforms, such as the harmonic distortion. As we work toward integration of predicted induced substation voltages with power flow models, we’ve modified the RTS-GMLC (Reliability Test System Grid Modernization Lab Consortium) test case (https://github.com/GridMod/RTS-GMLC) by moving the geographic location of the case to central Oregon. With the assistance of LANL we have the complete AC and DC network of the RTS-GMLC case, and we are working to integrate the complete case information into Julia (using the PowerModels and PowerModelsGMD packages of LANL), or into PowerWorld. Along a parallel track, we have performed GIC voltage calculations using our geophysical algorithm for a realistic GMD event (Halloween event) for the test case, resulting in GIC transmission line voltages that can be added into our power system model. We’ll discuss our progress in integrating the geophysical estimates of transformer voltages and our DC model using LANL's Julia and PowerModelsGMD package, for power flow simulations on the test case, and to determine the GIC flows and possible impacts on the power waveforms in the system elements. 
    more » « less
  4. Abstract Aggregated community-scale data could be harnessed to provide insights into the disparate impacts of managed power outages, burst pipes, and food inaccessibility during extreme weather events. During the winter storm that brought historically low temperatures, snow, and ice to the entire state of Texas in February 2021, Texas power-generating plant operators resorted to rolling blackouts to prevent collapse of the power grid when power demand overwhelmed supply. To reveal the disparate impact of managed power outages on vulnerable subpopulations in Harris County, Texas, which encompasses the city of Houston, we collected and analyzed community-scale big data using statistical and trend classification analyses. The results highlight the spatial and temporal patterns of impacts on vulnerable subpopulations in Harris County. The findings show a significant disparity in the extent and duration of power outages experienced by low-income and minority groups, suggesting the existence of inequality in the management and implementation of the power outage. Also, the extent of burst pipes and disrupted food access, as a proxy for storm impact, were more severe for low-income and minority groups. Insights provided by the results could form a basis from which infrastructure operators might enhance social equality during managed service disruptions in such events. The results and findings demonstrate the value of community-scale big data sources for rapid impact assessment in the aftermath of extreme weather events. 
    more » « less
  5. Abstract Geomagnetically induced currents (GICs) at middle latitudes have received increased attention after reported power grid disruptions due to geomagnetic disturbances. However, quantifying the risk to the electric power grid at middle latitudes is difficult without understanding how the GIC sensors respond to geomagnetic activity on a daily basis. Therefore, in this study the question “Do measured GICs have distinguishable and quantifiable long‐period and short‐period characteristics?” is addressed. The study focuses on the long‐term variability of measured GIC, and establishes the extent to which the variability relates to quiet‐time geomagnetic activity. GIC quiet‐day curves (QDCs) are computed from measured data for each GIC node, covering all four seasons, and then compared with the seasonal variability of thermosphere‐ionosphere‐electrodynamics general circulation model (TIE‐GCM)‐simulated neutral wind and height‐integrated current density. The results show strong evidence that the middle‐latitude nodes routinely respond to the tidal‐driven Sq variation, with a local time and seasonal dependence on the direction of the ionospheric currents, which is specific to each node. The strong dependence of GICs on the Sq currents demonstrates that the GIC QDCs may be employed as a robust baseline from which to quantify the significance of GICs during geomagnetically active times and to isolate those variations to study independently. The QDC‐based significance score computed in this study provides power utilities with a node‐specific measure of the geomagnetic significance of a given GIC observation. Finally, this study shows that the power grid acts as a giant sensor that may detect ionospheric current systems. 
    more » « less