With data on scholarly publications becoming more abundant and accessible, there exist new opportunities for using this information to provide rich author profiles to display and explore scholarly work. We present a pair of linked visualizations connected to the Microsoft Academic Graph that can be used to explore the publications and citations of individual authors. We provide an online application with which a user can manage collections of papers and generate these visualizations.
more »
« less
Indy Survey Tool: A Framework to Unearth Correlations in Survey Data
Survey companion websites allow users to explore collected survey information more deeply, as well as update or add entries for papers. These sites can help information stay relevant past the original release date of the survey paper. However, creating and maintaining a website can be laborious and difficult, especially when authors might not be experienced with programming. We introduce Indy Survey Tool to help authors develop companion websites for survey papers across diverse fields of study. The tool's core aim is to identify correlations between categorizations of papers. To accomplish this, the tool offers multiple combined filters and correlation matrix visualizations that enable users to explore the data from diverse perspectives. The tool's visualizations, list of papers, and filters are harmoniously integrated and highly responsive, providing users with feedback based on their selections. Identifying correlations in survey papers is a pivotal aspect of research, as it can enable the recognition of common combinations of categorizations within the papers—as well as highlight any omissions. The versatility of Indy Survey Tool enables researchers to delve into the correlations between categorizations in survey data, an essential aspect of research that can reveal gaps in the literature and highlight promising areas for future exploration. A preprint and supplemental material for the paper can be found at osf.io/tdhqn.
more »
« less
- Award ID(s):
- 2145382
- PAR ID:
- 10513365
- Publisher / Repository:
- IEEE
- Date Published:
- ISBN:
- 979-8-3503-2557-7
- Page Range / eLocation ID:
- 146 to 150
- Format(s):
- Medium: X
- Location:
- Melbourne, Australia
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Misinformation poses a threat to democracy and to people’s health. Reliability criteria for news websites can help people identify misinformation. But despite their importance, there has been no empirically substantiated list of criteria for distinguishing reliable from unreliable news websites. We identify reliability criteria, describe how they are applied in practice, and compare them to prior work. Based on our analysis, we distinguish between manipulable and less manipulable criteria and compare politically diverse laypeople as end-users and journalists as expert users. We discuss 11 widely recognized criteria, including the following 6 criteria that are difficult to manipulate: content, political alignment, authors, professional standards, what sources are used, and a website’s reputation. Finally, we describe how technology may be able to support people in applying these criteria in practice to assess the reliability of websites.more » « less
-
Exposure to ideas in domains outside a scientist's own may benefit her in reformulating existing research problems in novel ways and discovering new application domains for existing solution ideas. While improved performance in scholarly search engines can help scientists efficiently identify relevant advances in domains they may already be familiar with, it may fall short of helping them explore diverse ideas \textit{outside} such domains. In this paper we explore the design of systems aimed at augmenting the end-user ability in cross-domain exploration with flexible query specification. To this end, we develop an exploratory search system in which end-users can select a portion of text core to their interest from a paper abstract and retrieve papers that have a high similarity to the user-selected core aspect but differ in terms of domains. Furthermore, end-users can `zoom in' to specific domain clusters to retrieve more papers from them and understand nuanced differences within the clusters. Our case studies with scientists uncover opportunities and design implications for systems aimed at facilitating cross-domain exploration and inspiration.more » « less
-
Data visualization provides a powerful way for analysts to explore and make data-driven discoveries. However, current visual analytic tools provide only limited support for hypothesis-driven inquiry, as their built-in interactions and workflows are primarily intended for exploratory analysis. Visualization tools notably lack capabilities that would allow users to visually and incrementally test the fit of their conceptual models and provisional hypotheses against the data. This imbalance could bias users to overly rely on exploratory analysis as the principal mode of inquiry, which can be detrimental to discovery. In this paper, we introduce Visual (dis) Confirmation, a tool for conducting confirmatory, hypothesis-driven analyses with visualizations. Users interact by framing hypotheses and data expectations in natural language. The system then selects conceptually relevant data features and automatically generates visualizations to validate the underlying expectations. Distinctively, the resulting visualizations also highlight places where one's mental model disagrees with the data, so as to stimulate reflection. The proposed tool represents a new class of interactive data systems capable of supporting confirmatory visual analysis, and responding more intelligently by spotlighting gaps between one's knowledge and the data. We describe the algorithmic techniques behind this workflow. We also demonstrate the utility of the tool through a case study.more » « less
-
This study examined the ways in which an equity analytics tool — the SEET system — supported middle school science teachers’ reflections on the experiences of diverse students in their classrooms. The tool provides teachers with “equity visualizations” — disaggregated classroom data by gender and race/ethnicity — designed to support teachers to notice and reflect on inequitable patterns in student participation in classroom knowledge-building activities, as well as “whole class visualizations” that enable teachers to look at participation patterns. The visualizations were based on survey data collected from students reflecting on the day’s lessons, responding to questions aligned with three theoretical constructs indicative of equitable participation in science classrooms: coherence, relevance, and contribution. The study involved 42 teachers, divided into two cohorts, participating in a two-month professional learning series. Diary studies and semi-structured interviews were used to probe teachers’ perceptions of the visualizations’ usability, usefulness, and utility for supporting their reflections on student experiences and instructional practices. A key result is that only the “equity visualizations” prompted teacher reflections on diverse student experiences. However, despite the support equity visualizations provided for this core task, the teachers consistently ranked the whole class visualizations as more usable and useful.more » « less
An official website of the United States government

