skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, July 11 until 2:00 AM ET on Saturday, July 12 due to maintenance. We apologize for the inconvenience.


Title: QED with massive photons for precision physics: zero modes and first result for the hadron spectrum
Award ID(s):
2047185
PAR ID:
10513385
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Sissa Medialab
Date Published:
Page Range / eLocation ID:
281
Format(s):
Medium: X
Location:
Zoom/Gather@Massachusetts Institute of Technology
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    This presentation poster summarizes the recruitment efforts, insights gained, and lessons learned through the VolsTeach for Appalachia project that focuses on recruiting and preparing community college students in becoming STEM teachers in East Tennessee. 
    more » « less
  2. null (Ed.)
  3. Beyersdorff, Olaf; Kanté, Mamadou Moustapha; Kupferman, Orna; Lokshtanov, Daniel (Ed.)
    Given a set P of n points and a set S of n segments in the plane, we consider the problem of computing for each segment of S its closest point in P. The previously best algorithm solves the problem in n^{4/3}2^{O(log^*n)} time [Bespamyatnikh, 2003] and a lower bound (under a somewhat restricted model) Ω(n^{4/3}) has also been proved. In this paper, we present an O(n^{4/3}) time algorithm and thus solve the problem optimally (under the restricted model). In addition, we also present data structures for solving the online version of the problem, i.e., given a query segment (or a line as a special case), find its closest point in P. Our new results improve the previous work. 
    more » « less
  4. null (Ed.)