skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, January 16 until 2:00 AM ET on Friday, January 17 due to maintenance. We apologize for the inconvenience.


This content will become publicly available on July 1, 2025

Title: Topology in soft and biological matter
The last years have witnessed remarkable advances in our understanding of the emergence and consequences of topological constraints in biological and soft matter. Examples are abundant in relation to (bio)polymeric systems and range from the characterization of knots in single polymers and proteins to that of whole chromosomes and polymer melts. At the same time, considerable advances have been made in the description of the interplay between topological and physical properties in complex fluids, with the development of techniques that now allow researchers to control the formation of and interaction between defects in diverse classes of liquid crystals. Thanks to technological progress and the integration of experiments with increasingly sophisticated numerical simulations, topological biological and soft matter is a vibrant area of research attracting scientists from a broad range of disciplines. However, owing to the high degree of specialization of modern science, many results have remained confined to their own particular fields, with different jargon making it difficult for researchers to share ideas and work together towards a comprehensive view of the diverse phenomena at play. Compelled by these motivations, here we present a comprehensive overview of topological effects in systems ranging from DNA and genome organization to entangled proteins, polymeric materials, liquid crystals, and theoretical physics, with the intention of reducing the barriers between different fields of soft matter and biophysics. Particular care has been taken in providing a coherent formal introduction to the topological properties of polymers and of continuum materials and in highlighting the underlying common aspects concerning the emergence, characterization, and effects of topological objects in different systems. The second half of the review is dedicated to the presentation of the latest results in selected problems, specifically, the effects of topological constraints on the viscoelastic properties of polymeric materials; their relation with genome organization; a discussion on the emergence and possible effects of knots and other entanglements in proteins; the emergence and effects of topological defects and solitons in complex fluids. This review is dedicated to the memory of Marek Cieplak.  more » « less
Award ID(s):
2019745
PAR ID:
10513438
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
Elsevier B.V.
Date Published:
Journal Name:
Physics Reports
Volume:
1075
Issue:
C
ISSN:
0370-1573
Page Range / eLocation ID:
1 to 137
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Significance

    Liquid crystals are complex fluids that combine a unique ability to manipulate light with the reconfigurability of soft materials. They are at the core of modern display technology. Here, we suggest that nematic liquid crystals can also be used as building blocks of topological materials key to realize protected unidirectional waveguides, sensors, and lasers. Building on recent advances in liquid-crystal technology, we propose that suitable spatial modulations of the nematic director field are sufficient to assemble topological photonic materials. These ideas pave the way for fully reconfigurable photonic devices based on topologically protected states.

     
    more » « less
  2. Abstract

    Dispersing inorganic colloidal nanoparticles within nematic liquid crystals provides a versatile platform both for forming new soft matter phases and for predefining physical behavior through mesoscale molecular‐colloidal self‐organization. However, owing to formation of particle‐induced singular defects and complex elasticity‐mediated interactions, this approach has been implemented mainly just for colloidal nanorods and nanoplatelets, limiting its potential technological utility. Here, orientationally ordered nematic colloidal dispersions are reported of pentagonal gold bipyramids that exhibit narrow but controlled polarization‐dependent surface plasmon resonance spectra and facile electric switching. Bipyramids tend to orient with their C5rotation symmetry axes along the nematic director, exhibiting spatially homogeneous density within aligned samples. Topological solitons, like heliknotons, allow for spatial reorganization of these nanoparticles according to elastic free energy density within their micrometer‐scale structures. With the nanoparticle orientations slaved to the nematic director and being switched by low voltages ≈1 V within a fraction of a second, these plasmonic composite materials are of interest for technological uses like color filters and plasmonic polarizers, as well as may lead to the development of unusual nematic phases, like pentatic liquid crystals.

     
    more » « less
  3. null (Ed.)
    Microorganisms may exhibit rich swimming behaviours in anisotropic fluids, such as liquid crystals, which have direction-dependent physical and rheological properties. Here we construct a two-dimensional computation model to study the undulatory swimming mechanisms of microswimmers in a solution of rigid, rodlike liquid crystal polymers. We describe the fluid phase using Doi's $Q$ -tensor model, and treat the swimmer as a finite-length flexible fibre with imposed propagating travelling waves on the body curvature. The fluid–structure interactions are resolved via an immersed boundary method. Compared with the swimming dynamics in Newtonian fluids, we observe non-Newtonian behaviours that feature both enhanced and retarded swimming motions in lyotropic liquid crystal polymers. We reveal the propulsion mechanism by analysing the near-body flow fields and polymeric force distributions, together with asymptotic analysis for an idealized model of Taylor's swimming sheet. 
    more » « less
  4. Liquid crystals (LCs) are fluids within which molecules exhibit long-range orientational order, leading to anisotropic properties such as optical birefringence and curvature elasticity. Because the ordering of molecules within LCs can be altered by weak external stimuli, LCs have been widely used to create soft matter systems that respond optically to electric fields (LC display), temperature (LC thermometer) or molecular adsorbates (LC chemical sensor). More recent studies, however, have moved beyond investigations of optical responses of LCs to explore the design of complex LC-based soft matter systems that offer the potential to realize more sophisticated functions ( e.g. , autonomous, self-regulating chemical responses to mechanical stimuli) by directing the interactions of small molecules, synthetic colloids and living cells dispersed within the bulk of LCs or at their interfaces. These studies are also increasingly focusing on LC systems driven beyond equilibrium states. This review presents one perspective on these advances, with an emphasis on the discovery of fundamental phenomena that may enable new technologies. Three areas of progress are highlighted; (i) directed assembly of amphiphilic molecules either within topological defects of LCs or at aqueous interfaces of LCs, (ii) templated polymerization in LCs via chemical vapor deposition, an approach that overcomes fundamental challenges related to control of LC phase behavior during polymerization, and (iii) studies of colloids in LCs, including chiral colloids, soft colloids that are strained by LCs, and active colloids that are driven into organized states by dissipation of energy ( e.g. bacteria). These examples, and key unresolved issues discussed at the end of this perspective, serve to convey the message that soft matter systems that integrate ideas from LC, surfactant, polymer and colloid sciences define fertile territory for fundamental studies and creation of future transformative technologies. 
    more » « less
  5. Liquid crystalline elastomers (LCEs) are polymer networks exhibiting anisotropic liquid crystallinity while maintaining elastomeric properties. Owing to diverse polymeric forms and self-alignment molecular behaviors, LCEs have fascinated state-of-the-art efforts in various disciplines other than the traditional low-molar-mass display market. By patterning order to structures, LCEs demonstrate reversible high-speed and large-scale actuations in response to external stimuli, allowing for close integration with 4D printing and architectures of digital devices, which is scarcely observed in homogeneous soft polymer networks. In this review, we collect recent advances in 4D printing of LCEs, with emphases on synthesis and processing methods that enable microscopic changes in the molecular orientation and hence macroscopic changes in the properties of end-use objects. Promising potentials of printed complexes include fields of soft robotics, optics, and biomedical devices. Within this scope, we elucidate the relationships among external stimuli, tailorable morphologies in mesophases of liquid crystals, and programmable topological configurations of printed parts. Lastly, perspectives and potential challenges facing 4D printing of LCEs are discussed. 
    more » « less