skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, January 16 until 2:00 AM ET on Friday, January 17 due to maintenance. We apologize for the inconvenience.


Title: The Atmosphere Has Become Increasingly Unstable During 1979–2020 Over the Northern Hemisphere
Abstract

Atmospheric instability affects the formation of convective storms, but how it has changed during recent decades is unknown. Here we analyze the occurrence frequency of stable and unstable atmospheric conditions over land using homogenized radiosonde data from 1979 to 2020. We show that atmospheric stable (unstable) conditions have decreased (increased) significantly by ∼8%–32% (of time) from 1979 to 2020 over most land areas. In boreal summer, the mean positive buoyancy (i.e., convective available potential energy [CAPE]) also increases over East Asia while mean negative buoyancy (i.e., convective inhibition [CIN]) strengthens over Europe and North America from midnight‐dawn for unstable cases. The increased unstable cases and mean CAPE result from increased low‐level specific humidity and air temperature, which increase the buoyancy of a lifted parcel. The stronger CIN results from decreased near‐surface relatively humidity and decreased lapse rate in the lower troposphere. Our results suggest that the atmosphere has become increasingly unstable, which could lead to more convective storms.

 
more » « less
Award ID(s):
2015780 1743738
PAR ID:
10513460
Author(s) / Creator(s):
;
Publisher / Repository:
AGU
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
50
Issue:
20
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Atmospheric convective available potential energy (CAPE) is expected to increase under greenhouse gas–induced global warming, but a recent regional study also suggests enhanced convective inhibition (CIN) over land although its cause is not well understood. In this study, a global climate model is first evaluated by comparing its CAPE and CIN with reanalysis data, and then their future changes and the underlying causes are examined. The climate model reasonably captures the present-day CAPE and CIN patterns seen in the reanalysis, and projects increased CAPE almost everywhere and stronger CIN over most land under global warming. Over land, the cases or times with medium to strong CAPE or CIN would increase while cases with weak CAPE or CIN would decrease, leading to an overall strengthening in their mean values. These projected changes are confirmed by convection-permitting 4-km model simulations over the United States. The CAPE increase results mainly from increased low-level specific humidity, which leads to more latent heating and buoyancy for a lifted parcel above the level of free convection (LFC) and also a higher level of neutral buoyancy. The enhanced CIN over most land results mainly from reduced low-level relative humidity (RH), which leads to a higher lifting condensation level and a higher LFC and thus more negative buoyancy. Over tropical oceans, the near-surface RH increases slightly, leading to slight weakening of CIN. Over the subtropical eastern Pacific and Atlantic Ocean, the impact of reduced low-level atmospheric lapse rates overshadows the effect of increased specific humidity, leading to decreased CAPE.

     
    more » « less
  2. null (Ed.)
    Abstract Light–moderate precipitation is projected to decrease whereas heavy precipitation may increase under greenhouse gas (GHG)-induced global warming, while atmospheric convective available potential energy (CAPE) over most of the globe and convective inhibition (CIN) over land are projected to increase. The underlying processes for these precipitation changes are not fully understood. Here, projected precipitation changes are analyzed using 3-hourly data from simulations by a fully coupled climate model, and their link to the CAPE and CIN changes is examined. The model approximately captures the spatial patterns in the mean precipitation frequencies and the significant correlation between the precipitation frequencies or intensity and CAPE over most of the globe or CIN over tropical oceans seen in reanalysis, and it projects decreased light–moderate precipitation (0.01 < P ≤ 1 mm h −1 ) but increased heavy precipitation ( P > 1 mm h −1 ) in a warmer climate. Results show that most of the light–moderate precipitation events occur under low-CAPE and/or low-CIN conditions, which are projected to decrease greatly in a warmer climate as increased temperature and humidity shift many of such cases into moderate–high CAPE or CIN cases. This results in large decreases in the light–moderate precipitation events. In contrast, increases in heavy precipitation result primarily from its increased probability under given CAPE and CIN, with a secondary contribution from the CAPE/CIN frequency changes. The increased probability for heavy precipitation partly results from a shift of the precipitation histogram toward higher intensity that could result from a uniform percentage increase in precipitation intensity due to increased water vapor in a warmer climate. 
    more » « less
  3. Atmospheric bores have been shown to have a role in the initiation and maintenance of elevated convection. Previous observational studies of bores have been case studies of more notable events. However, this creates a selection bias toward extraordinary cases, while discussions of the differences between bores that favor convective initiation and maintenance and bores that do not are lacking from the literature. This study attempts to fill that gap by analyzing a high-temporal-resolution thermodynamic profile composite of eight bores observed by multiple platforms during the Plains Elevated Convection at Night (PECAN) campaign in order to assess the impact of bores on the environment. The time–height cross section of the potential temperature composite displays quasi-permanent parcel displacements up to 900 m with the bore passage. Low-level lifting is shown to weaken the capping inversion and reduce convective inhibition (CIN) and the level of free convection (LFC). Additionally, low-level water vapor increases by about 1 g kg−1in the composite mean. By assessing variability across the eight cases, it is shown that increases in low-level water vapor result in increases to convective available potential energy (CAPE), while drying results in decreased CAPE. Most cases resulted in decreased CIN and LFC height with the bore passage, but only some cases resulted in increased CAPE. This suggests that bores will increase the potential for convective initiation, but future research should be directed toward better understanding cases that result in increased CAPE as those are the types of bores that will increase severity of convection.

     
    more » « less
  4. Abstract. ​​​​​​​Land–atmosphere coupling (LAC) has long been studied, focusing on land surface and atmospheric boundary layer processes. However, the influence of humidity in the lower troposphere (LT), especially that above the planetary boundary layer (PBL), on LAC remains largely unexplored. In this study, we use radiosonde observations from the US Southern Great Plains (SGP) site and an entrained parcel buoyancy model to investigate the impact of LT humidity on LAC there during the warm season (May–September). We quantify the effect of LT humidity on convective buoyancy by measuring the difference between the 2–4 km vertically integrated buoyancy with the influence of background LT humidity and that without it. Our results show that, under dry soil conditions, anomalously high LT humidity is necessary to produce the buoyancy profiles required for afternoon precipitation events (APEs). These APEs under dry soil moisture cannot be explained by commonly used local LAC indices such as the convective triggering potential and low-level humidity index (CTP / HILow), which do not account for the influence of the LT humidity. On the other hand, consideration of LT humidity is unnecessary to explain APEs under wet soil moisture conditions, suggesting that the boundary layer moisture alone could be sufficient to generate the required buoyancy profiles. These findings highlight the need to consider the impact of LT humidity, which is often decoupled from the humidity near the surface and is largely controlled by moisture transport, in understanding land–atmospheric feedbacks under dry soil conditions, especially during droughts or dry spells over the SGP.

     
    more » « less
  5. Abstract The purpose of this article is to determine the meteorological factors controlling the lake-effect rains over Lake Victoria. Winds, divergence, vertical motion, specific humidity, Convective Available Potential Energy (CAPE), and Convective Inhibition (CIN) were examined. The local wind regime and associated divergence/convergence are the major factors determining the diurnal cycle of rainfall over the lake and catchment. The major contrast between over-lake rainfall in the wet- and dry-season months is the vertical profile of omega. This appears to be a result of seasonal contrasts in CAPE, CIN, and specific humidity, parameters that play a critical role in vertical motion and convective development. 
    more » « less