skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on February 15, 2026

Title: A Comprehensive Evaluation of Biases in Convective Storm Parameters in CMIP6 Models over North America
Abstract This study presents an evaluation of the skill of 12 global climate models from phase 6 of the Coupled Model Intercomparison Project (CMIP6) archive in capturing convective storm parameters over the United States. For the historical reference period 1979–2014, we compare the model-simulated 6-hourly convective available potential energy (CAPE), convective inhibition (CIN), 0–1-km wind shear (S01), and 0–6-km wind shear (S06) to those from two independent reanalysis datasets: ERA5 and Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA2). To obtain a comprehensive picture, we analyze the parameter distribution, climatological mean, extreme, and thresholded frequency of convective parameters. The analysis reveals significant bias in capturing both magnitude and spatial patterns, which also vary across the seasons. The spatial distribution of means and extremes of the parameters indicates that most models tend to overestimate CAPE, whereas S01 and S06 are underrepresented to varying extents. Additionally, models tend to underestimate extremes in CIN. Comparing the model profiles with rawinsonde profiles indicates that most of the high CAPE models have a warm and moist bias. We also find that the near-surface wind speed is generally underestimated by the models. The intermodel spread is larger for thermodynamic parameters as compared to kinematic parameters. The models generally have a significant positive bias in CAPE over western and eastern regions of the continental United States. More importantly, the bias in the thresholded frequency of all four variables is considerably larger than the bias in the mean, suggesting a nonuniform bias across the distribution. This likely leads to an underrepresentation of favorable severe thunderstorm environments and has the potential to influence dynamical downscaling simulations via initial and boundary conditions. Significance StatementGlobal climate model projections are often used to explore future changes in severe thunderstorm activity. However, climate model outputs often have significant biases, and they can strongly impact the results. In this study, we thoroughly examined biases in convective parameters in 12 models from phase 6 of the Coupled Model Intercomparison Project with respect to two reanalysis datasets. The analysis is performed for North America, covering the period 1979–2014. The study reveals significant biases in convective parameters that differ between models and are tied to the biases in temperature, humidity, and wind profiles. These results provide valuable insight into selecting the right set of models to analyze future changes in severe thunderstorm activity across the North American continent.  more » « less
Award ID(s):
1945286
PAR ID:
10610632
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Journal of Climate
Volume:
38
Issue:
4
ISSN:
0894-8755
Page Range / eLocation ID:
947 to 971
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this work, long-term trends in convective parameters are compared between ERA5, MERRA2, and observed rawinsonde profiles over Europe and the United States including surrounding areas. A 39-year record (1980–2018) with 2.07 million quality-controlled measurements from 84 stations at 0000 and 1200 UTC is used for the comparison, along with collocated reanalysis profiles. Overall, reanalyses provide similar signals to observations, but ERA5 features lower biases. Over Europe, agreement in the trend signal between rawinsondes and the reanalyses is better, particularly with respect to instability (lifted index), low-level moisture (mixing ratio) and 0–3 km lapse rates as compared to mixed trends in the United States. However, consistent signals for all three datasets and both domains are found for robust increases in convective inhibition (CIN), downdraft CAPE (DCAPE) and decreases in mean 0–4 km relative humidity. Despite differing trends between continents, the reanalyses capture well changes in 0–6 km wind shear and 1–3 km mean wind with modest increases in the United States and decreases in Europe. However, these changes are mostly insignificant. All datasets indicate consistent warming of almost the entire tropospheric profile, which over Europe is the fastest near-ground, while across the Great Plains generally between 2–3 km above ground level, thus contributing to increases in CIN. Results of this work show the importance of intercomparing trends between various datasets, as the limitations associated with one reanalysis or observations may lead to uncertainties and lower our confidence in how parameters are changing over time. 
    more » « less
  2. null (Ed.)
    Abstract In this study we investigate convective environments and their corresponding climatological features over Europe and the United States. For this purpose, National Lightning Detection Network (NLDN) and Arrival Time Difference long-range lightning detection network (ATDnet) data, ERA5 hybrid-sigma levels, and severe weather reports from the European Severe Weather Database (ESWD) and Storm Prediction Center (SPC) Storm Data were combined on a common grid of 0.25° and 1-h steps over the period 1979–2018. The severity of convective hazards increases with increasing instability and wind shear (WMAXSHEAR), but climatological aspects of these features differ over both domains. Environments over the United States are characterized by higher moisture, CAPE, CIN, wind shear, and midtropospheric lapse rates. Conversely, 0–3-km CAPE and low-level lapse rates are higher over Europe. From the climatological perspective severe thunderstorm environments (hours) are around 3–4 times more frequent over the United States with peaks across the Great Plains, Midwest, and Southeast. Over Europe severe environments are the most common over the south with local maxima in northern Italy. Despite having lower CAPE (tail distribution of 3000–4000 J kg −1 compared to 6000–8000 J kg −1 over the United States), thunderstorms over Europe have a higher probability for convective initiation given a favorable environment. Conversely, the lowest probability for initiation is observed over the Great Plains, but, once a thunderstorm develops, the probability that it will become severe is much higher compared to Europe. Prime conditions for severe thunderstorms over the United States are between April and June, typically from 1200 to 2200 central standard time (CST), while across Europe favorable environments are observed from June to August, usually between 1400 and 2100 UTC. 
    more » « less
  3. null (Ed.)
    Abstract Nocturnal bow echoes can produce wind damage, even in situations where elevated convection occurs. Accurate forecasts of wind potential tend to be more challenging for operational forecasters than for daytime bows because of incomplete understanding of how elevated convection interacts with the stable boundary layer. The present study compares the differences in warm-season, nocturnal bow echo environments in which high intensity [>70 kt (1 kt ≈ 0.51 m s −1 )] severe winds (HS), low intensity (50–55 kt) severe winds (LS), and nonsevere winds (NS) occurred. Using a sample of 132 events from 2010 to 2018, 43 forecast parameters from the SPC mesoanalysis system were examined over a 120 km × 120 km region centered on the strongest storm report or most pronounced bowing convective segment. Severe composite parameters are found to be among the best discriminators between all severity types, especially derecho composite parameter (DCP) and significant tornado parameter (STP). Shear parameters are significant discriminators only between severe and nonsevere cases, while convective available potential energy (CAPE) parameters are significant discriminators only between HS and LS/NS bow echoes. Convective inhibition (CIN) is among the worst discriminators for all severity types. The parameters providing the most predictive skill for HS bow echoes are STP and most unstable CAPE, and for LS bow echoes these are the V wind component at best CAPE (VMXP) level, STP, and the supercell composite parameter. Combinations of two parameters are shown to improve forecasting skill further, with the combination of surface-based CAPE and 0–6-km U shear component, and DCP and VMXP, providing the most skillful HS and LS forecasts, respectively. 
    more » « less
  4. null (Ed.)
    Abstract In this study we compared 3.7 mln rawinsonde observations from 232 stations over Europe and North America with proximal vertical profiles from ERA5 and MERRA2 to examine how well reanalysis depicts observed convective parameters. Larger differences between soundings and reanalysis are found for thermodynamic theoretical parcel parameters, low-level lapse rates and low-level wind shear. In contrast, reanalysis best represents temperature and moisture variables, mid-tropospheric lapse rates, and mean wind. Both reanalyses underestimate CAPE, low-level moisture and wind shear, particularly when considering extreme values. Overestimation is observed for low-level lapse rates, mid-tropospheric moisture and the level of free convection. Mixed-layer parcels have overall better accuracy when compared to most-unstable, especially considering convective inhibition and lifted condensation level. Mean absolute error for both reanalyses has been steadily decreasing over the last 39 years for almost every analyzed variable. Compared to MERRA2, ERA5 has higher correlations and lower mean absolute errors. MERRA2 is typically drier and less unstable over central Europe and the Balkans, with the opposite pattern over western Russia. Both reanalyses underestimate CAPE and CIN over the Great Plains. Reanalyses are more reliable for lower elevations stations and struggle along boundaries such as coastal zones and mountains. Based on the results from this and prior studies we suggest that ERA5 is likely one of the most reliable available reanalysis for exploration of convective environments, mainly due to its improved resolution. For future studies we also recommend that computation of convective variables should use model levels that provide more accurate sampling of the boundary-layer conditions compared to less numerous pressure levels. 
    more » « less
  5. Abstract The response of severe convective storms to a warming climate is poorly understood outside of a few well studied regions. Here, projections from seven global climate models from the CMIP6 archive, for both historical and future scenarios, are used to explore the global response in variables that describe favorability of conditions for the development of severe storms. The variables include convective available potential energy (CAPE), convection inhibition (CIN), 0–6 km vertical wind shear (S06), storm relative helicity (SRH), and covariate indices (i.e., severe weather proxies) that combine them. To better quantify uncertainty, understand variable sensitivity to increasing temperature, and present results independent from a specific scenario, we consider changes in convective variables as a function of global average temperature increase across each ensemble member. Increases to favorable convective environments show an overall frequency increases on the order of 5%–20% per °C of global temperature increase, but are not regionally uniform, with higher latitudes, particularly in the Northern Hemisphere, showing much larger relative changes. The driving mechanism of these changes is a strong increase in CAPE that is not offset by factors that either resist convection (CIN), or modify the likelihood of storm organization (S06, SRH). Severe weather proxies are not the same as severe weather events. Hence, their projected increases will not necessarily translate to severe weather occurrences, but they allow us to quantify how increases in global temperature will affect the occurrence of conditions favorable to severe weather. 
    more » « less